• 제목/요약/키워드: scanning microscope

검색결과 3,842건 처리시간 0.035초

직물 미세구조의 3차원 표면 및 솔리드 형성 방법 (A Novel Method for 3D Surface and Solid Construction Analysis of Fabric Microstructure)

  • 이예진;이병철
    • 한국생활과학회지
    • /
    • 제21권3호
    • /
    • pp.539-550
    • /
    • 2012
  • In-depth knowledge of fabric microstructure is essential for understanding clothing comfort since it plays a significant role in heat and mass transfer between the human body and clothing. In this study, a novel method was employed for investigating 3D surfaces and solid construction characteristics of specific fabrics by using a reverse engineering technique. The surface construction data were obtained by a confocal laser scanning microscope and then manipulated by a 3D analysis program. Triangle mesh was used for connecting each 3D point, with clouds and fabric surface characteristics created by rendering techniques. For generating a 3D solid model, determinants of radius of curvature was used. According to the proposed method, actual surface expression of the real fabric was achieved successfully. The results from this methodology can be applied to the detailed analysis of clothing comfort that is highly influenced by the microstructure of the fabric.

All-in-one adhesive의 다층적용이 미세인장결합강도에 미치는 영향 (THE EFFECT OF MULTIPLE APPLICATION ON MICROTENSILE BOND STRENGTH OF ALL-IN-ONE DENTIN ADHESIVE SYSTEMS)

  • 손성애;허복
    • Restorative Dentistry and Endodontics
    • /
    • 제29권5호
    • /
    • pp.423-429
    • /
    • 2004
  • The purpose of this study was to evaluate the effect of multiple application of all-in-one dentin adhesive system on microtensile bond strength using confocal laser scanning microscope and microtensile bond strength test. Flat occlusal dentin surfaces were prepared using low-speed diamond saw. In group I, Scotchbond Multipurpose (SM) was applied by manufacturer's recommendation. In group II, after Adper Prompt L-Pop was applied for 15s and light cured for 10s. the second coat was re-applied and light-cured. In group III, after light-curing the second layer. the third coat was re-applied and light-cured. Specimens bonded with a resin-composite were sectioned into resin-dentin stick for measuring the adhesive layer thickness by confocal laser scanning microscope and evaluating micro-tensile bond strength. The adhesive layers of three-step dentin adhesive system. 3 coats of Adper Prompt L-Pop had significantly thicker than SM. 2 coats of Adper Prompt L-Pop (p < 0.05). However. there was no significant differences in bond strengths between SM and 3 coats of Adper Prompt L-Pop (p > 0.05). And SM. 3 coats of Adper Prompt L-Pop had significantly higher than 2 coats of Adper Prompt L-Pop in bond strengths (p < 0.05).

주사 전자 현미경으로 관찰한 유기 발광 소자의 누적층 모양 (Images of deposited layers of organic light-emitting diodes observed by scanning-electron microscope)

  • 이은혜;윤희명;한원근;김태완;이원재;장경욱;안준호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.298-299
    • /
    • 2008
  • Images of deposited layers of organic light-emitting diodes were observed by scanning-electron microscope (SEM). We were able to see a clear cross-sectional view of deposited layers. The SEM is a type of electron microscope that images the sample surface by scanning it with a high-energy beam of electrons in a raster scan pattern. A thickness of deposited layer measured by thickness monitor is close to a real value measured by a-step surface profiler within 5%. We were able to see a formation of domains of size about 50-100nm from a surface morphology of Al, and pin holes of size about 50nm.

  • PDF

유한요소해석과 광선추적을 연계한 주사전자 현미경 대물렌즈의 설계 및 해석 (Design and Analysis of an Objective Lens for a Scanning Electron Microscope by Coupling FE Analysis and Ray Tracing)

  • 박근;이재진;박만진;김동환;장동영
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.92-98
    • /
    • 2009
  • The scanning electron microscope (SEM) contains an electron optical system in which electrons are emitted and moved to form a focused beam, and generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present study covers the design and analysis of an objective lens for a thermionic SEM. A finite element (FE) analysis for the objective lens is performed to analyze its magnetic characteristics for various lens designs. Relevant beam trajectories are also investigated by tracing the ray path of the electron beams under the magnetic fields inside the objective lens.

Construction and Operation of High-$T_c$ Scanning SQUID Microscope

  • Baeka, B.;Kim, Ho-chul;Khim, Z.G.;Lee, S.M.;Moon, S.H.;Oh, B.
    • Progress in Superconductivity
    • /
    • 제1권1호
    • /
    • pp.20-25
    • /
    • 1999
  • We constructed a high-$T_c$ scanning SQUID microscope (SSM) operating in the liquid nitrogen. We used a washer-type YBCO SQUID with inner and outer dimensions of $12{\mu}m$ and $36{\mu}m$, respectively, which was grown on the $SrTiO^3$ bicrystal substrate. The sample, rather than SQUID, was scanned using two stepping motors. We also developed readout electronics, stepping motor controller, and the software for system control and data display. We took images of various samples using our SSM and found that the spatial resolution is about $40{\mu}m$ and noise level is lower than $10^{-7}T/{\surd}Hz$ at 100 Hz and higher at lower frequencies. The noise level was much higher than that of a typical SQUID due to the other coupling from the electric parts. We present a simple argument on the inductive coupling between the sample and the SQUID which should be under-stood for the proper interpretation of the obtained images. By comparing the measured data with the simulation results the gap between the SQUID and the sample is estimated to be $40{\mu}m$.

  • PDF

수치해석을 통한 SEM 챔버내의 이차전자 거동해석 및 이차전자 검출기의 최적 장착 위치 선정 (The Behavior of Secondary Electrons and Optimal Mounting Position of a Secondary Electron Detector in SEM with a Numerical Analysis)

  • 부경석;전종업
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.15-21
    • /
    • 2008
  • Secondary electron detectors used in scanning electron microscope accept secondary electrons emitted from the specimen and convert them to an electrical signal that, after amplification, is used to modulate the gray-level intensities on a cathode ray tube, producing an image of the specimen. In order to acquire images with good qualities, as many secondary electrons as possible should be reached to the detector. To realize this it is very important to select an appropriate mounting position and angle of the detector inside the chamber of scanning electron microscope. In this paper, a number of numerical simulations are performed to explore the relationships between detection rates of secondary electrons and the values of some parameters, such as distances between the detector and sample, relative mounting positions of scintillator positioned inside the detector with respect to detector cover, two types of mounting angles of the detector. The relationships between detection rates and applied voltages to corona ring and faraday cage, and energies of secondary electrons are investigated as well.

Performance evaluation of METAMIC neutron absorber in spent fuel storage rack

  • Kim, Kiyoung;Chung, Sunghwan;Hong, Junhee
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.788-793
    • /
    • 2018
  • High-density spent fuel (SF) storage racks have been installed to increase SF pool capacity. In these SF racks, neutron absorber materials were placed between fuel assemblies allowing the storage of fuel assemblies in close proximity to one another. The purpose of the neutron absorber materials is to preclude neutronic coupling between adjacent fuel assemblies and to maintain the fuel in a subcritical storage condition. METAMIC neutron absorber has been used in high-density storage racks. But, neutron absorber materials can be subject to severe conditions including long-term exposure to gamma radiation and neutron radiation. Recently, some of them have experienced degradation, such as white spots on the surface. Under these conditions, the material must continue to serve its intended function of absorbing neutrons. For the first time in Korea, this article uses a neutron attenuation test to examine the performance of METAMIC surveillance coupons. Also, scanning electron microscope analysis was carried out to verify the white spots that were detected on the surface of METAMIC. In the neutron attenuation test, there was no significant sign of boron loss in most of the METAMIC coupons, but the coupon with white spots had relatively less B-10 content than the others. In the scanning electron microscope analysis, corrosion material was detected in all METAMIC coupons. Especially, it was confirmed that the coupon with white spots contains much more corrosion material than the others.

Comparative scanning electron microscope analysis of the enamel of permanent human, bovine and porcine teeth

  • Olek, Aneta;Klimek, Leszek;Boltacz-Rzepkowska, Elzbieta
    • Journal of Veterinary Science
    • /
    • 제21권6호
    • /
    • pp.83.1-83.14
    • /
    • 2020
  • Background: Bovine and porcine teeth are often used in in vitro experiments as substitutes of human teeth. Objectives: The aim of the present study was to perform a comparative analysis of enamel morphology of permanent human, bovine and porcine teeth under the scanning electron microscope. Methods: As many as 10 human, 10 bovine, and 10 porcine teeth were studied. All the teeth were sectioned and the halves were randomly divided into 2 groups according to the examined tissue (vestibular enamel at the mid-height of the dental crown and in the cervical area). Human and bovine enamel was etched for 15 sec and porcine enamel for 30 sec. The scanning electron microscope analysis was performed. The length and width of enamel prisms were determined with the "Met-Ilo" 1.1 computer program. Results: All enamel samples revealed the same etching pattern-Silverstone's type 2. Bovine enamel showed a similar porosity and the amount of interprismatic enamel compared to human enamel while the amount and width of interprismatic enamel bands in porcine enamel were evidently greater. The shape of the porcine prisms was visually similar to human prisms, although dimensions were significantly different. However, bovine prisms differed in form and appeared to be distinctly elongated. Conclusions: Reported findings indicate that the results of experimental studies carried out on bovine and porcine enamel should not be compared with the results obtained on human enamel.

Theoretical and Experimental Investigation on the Probe Design of a Ridge-loaded Slot Type for Near-Field Scanning Microwave Microscope

  • Son, Hyeok-Woo;Kim, Byung-Mun;Hong, Jae-Pyo;Cho, Young-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2120-2125
    • /
    • 2015
  • In this paper, a rectangular waveguide probe with a ridge-loaded straight slot (RLSS) is presented for a near-field scanning microwave microscope (NSMM). The RLSS is located laterally at the end wall of the cavity and is loaded on double ridges in a narrow straight slot to improve the spatial resolution compared with a straight slot. The probe consists of a rectangular cavity with an RLSS and a feed section of a WR-90 rectangular waveguide. When the proposed NSMM is located at distance of 0.1mm in front of a substrate without patches or strips, the simulated full width at half maximum (FWHM) of the probe improve by approximately 31.5 % compared with that of a straight slot without ridges. One dimensional scanning of the E-plane on a sample under test was conducted, and the reflection coefficient of the near-field scanning probe is presented.

탐침과 시편의 위치를 역전시킨 주사 탐침 현미경용 다이아몬드 탐침의 제작 및 평가 (Design, Fabrication and Evaluation of Diamond Tip Chips for Reverse Tip Sample Scanning Probe Microscope Applications)

  • 김수길;;김진혁
    • 한국재료학회지
    • /
    • 제34권2호
    • /
    • pp.105-110
    • /
    • 2024
  • Scanning probe microscopy (SPM) has become an indispensable tool in efforts to develop the next generation of nanoelectronic devices, given its achievable nanometer spatial resolution and highly versatile ability to measure a variety of properties. Recently a new scanning probe microscope was developed to overcome the tip degradation problem of the classic SPM. The main advantage of this new method, called Reverse tip sample (RTS) SPM, is that a single tip can be replaced by a chip containing hundreds to thousands of tips. Generally for use in RTS SPM, pyramid-shaped diamond tips are made by molding on a silicon substrate. Combining RTS SPM with Scanning spreading resistance microscopy (SSRM) using the diamond tip offers the potential to perform 3D profiling of semiconductor materials. However, damage frequently occurs to the completed tips because of the complex manufacturing process. In this work, we design, fabricate, and evaluate an RTS tip chip prototype to simplify the complex manufacturing process, prevent tip damage, and shorten manufacturing time.