DOI QR코드

DOI QR Code

Comparative scanning electron microscope analysis of the enamel of permanent human, bovine and porcine teeth

  • Received : 2020.03.31
  • Accepted : 2020.09.14
  • Published : 2020.11.30

Abstract

Background: Bovine and porcine teeth are often used in in vitro experiments as substitutes of human teeth. Objectives: The aim of the present study was to perform a comparative analysis of enamel morphology of permanent human, bovine and porcine teeth under the scanning electron microscope. Methods: As many as 10 human, 10 bovine, and 10 porcine teeth were studied. All the teeth were sectioned and the halves were randomly divided into 2 groups according to the examined tissue (vestibular enamel at the mid-height of the dental crown and in the cervical area). Human and bovine enamel was etched for 15 sec and porcine enamel for 30 sec. The scanning electron microscope analysis was performed. The length and width of enamel prisms were determined with the "Met-Ilo" 1.1 computer program. Results: All enamel samples revealed the same etching pattern-Silverstone's type 2. Bovine enamel showed a similar porosity and the amount of interprismatic enamel compared to human enamel while the amount and width of interprismatic enamel bands in porcine enamel were evidently greater. The shape of the porcine prisms was visually similar to human prisms, although dimensions were significantly different. However, bovine prisms differed in form and appeared to be distinctly elongated. Conclusions: Reported findings indicate that the results of experimental studies carried out on bovine and porcine enamel should not be compared with the results obtained on human enamel.

Keywords

References

  1. Chapter 12. Enamel. In: Fehrenbach MJ, Popowics T, editors. Illustrated Dental Embryology, Histology and Anatomy. 4th ed. Missouri: Elsevier Saunders; 2016, 147-157.
  2. Lopes MB, Consani S, Gonini-Junior A, Moura SK, McCabe JF. Comparison of microleakage in human and bovine substrates using confocal microscopy. Bull Tokyo Dent Coll. 2009;50(3):111-116. https://doi.org/10.2209/tdcpublication.50.111
  3. Nakamichi I, Iwaku M, Fusayama T. Bovine teeth as possible substitutes in the adhesion test. J Dent Res. 1983;62(10):1076-1081. https://doi.org/10.1177/00220345830620101501
  4. Reis AF, Giannini M, Kavaguchi A, Soares CJ, Line SR. Comparison of microtensile bond strength to enamel and dentin of human, bovine, and porcine teeth. J Adhes Dent. 2004;6(2):117-121.
  5. Saleh F, Taymour N. Validity of using bovine teeth as a substitute for human counterparts in adhesive tests. East Mediterr Health J. 2003;9(1-2):201-207. https://doi.org/10.26719/2003.9.1-2.201
  6. Dutra-Correa M, Anauate-Netto C, Arana-Chavez VE. Density and diameter of dentinal tubules in etched and non-etched bovine dentine examined by scanning electron microscopy. Arch Oral Biol. 2007;52(9):850-855. https://doi.org/10.1016/j.archoralbio.2007.03.003
  7. Forssell-Ahlberg K, Brannstrom M, Edwall L. The diameter and number of dentinal tubules in rat, cat, dog and monkey. A comparative scanning electron microscopic study. Acta Odontol Scand. 1975;33(5):243-250. https://doi.org/10.3109/00016357509004629
  8. Gray SE, Burgess JO. An in vivo and in vitro comparison of two dentin bonding agents. Dent Mater. 1991;7(3):161-165. https://doi.org/10.1016/0109-5641(91)90036-X
  9. Pashley EL, Tao L, Mackert JR, Pashley DH. Comparison of in vivo vs. in vitro bonding of composite resin to the dentin of canine teeth. J Dent Res. 1988;67(2):467-470. https://doi.org/10.1177/00220345880670020601
  10. Tanaka JL, Medici Filho E, Salgado JA, Salgado MA, Moraes LC, Moraes ME, et al. Comparative analysis of human and bovine teeth: radiographic density. Braz Oral Res. 2008;22(4):346-351. https://doi.org/10.1590/S1806-83242008000400011
  11. Camargo CH, Siviero M, Camargo SE, de Oliveira SH, Carvalho CA, Valera MC. Topographical, diametral, and quantitative analysis of dentin tubules in the root canals of human and bovine teeth. J Endod. 2007;33(4):422-426. https://doi.org/10.1016/j.joen.2006.12.011
  12. Arcari GM, Baratieri LN, Maia HP, De Freitas SF. Influence of the duration of treatment using a 10% carbamide peroxide bleaching gel on dentin surface microhardness: an in situ study. Quintessence Int. 2005;36(1):15-24.
  13. Attin T, Wegehaupt F, Gries D, Wiegand A. The potential of deciduous and permanent bovine enamel as substitute for deciduous and permanent human enamel: Erosion-abrasion experiments. J Dent. 2007;35(10):773-777. https://doi.org/10.1016/j.jdent.2007.07.007
  14. Balvedi RP, Versiani MA, Manna FF, Biffi JC. A comparison of two techniques for the removal of calcium hydroxide from root canals. Int Endod J. 2010;43(9):763-768. https://doi.org/10.1111/j.1365-2591.2010.01718.x
  15. Bouillaguet S, Gysi P, Wataha JC, Ciucchi B, Cattani M, Godin C, et al. Bond strength of composite to dentin using conventional, one-step, and self-etching adhesive systems. J Dent. 2001;29(1):55-61. https://doi.org/10.1016/S0300-5712(00)00049-X
  16. Camargo MA, Marques MM, de Cara AA. Morphological analysis of human and bovine dentine by scanning electron microscope investigation. Arch Oral Biol. 2008;53(2):105-108. https://doi.org/10.1016/j.archoralbio.2007.09.005
  17. Delbem AC, Sassaki KT, Vieira AE, Rodrigues E, Bergamaschi M, Stock SR, et al. Comparison of methods for evaluating mineral loss: hardness versus synchrotron microcomputed tomography. Caries Res. 2009;43(5):359-365. https://doi.org/10.1159/000231573
  18. Faraoni-Romano JJ, Da Silveira AG, Turssi CP, Serra MC. Bleaching agents with varying concentrations of carbamide and/or hydrogen peroxides: effect on dental microhardness and roughness. J Esthet Restor Dent. 2008;20(6):395-402. https://doi.org/10.1111/j.1708-8240.2008.00216.x
  19. Erickson RL, De Gee AJ, Feilzer AJ. Fatigue testing of enamel bonds with self-etch and total-etch adhesive systems. Dent Mater. 2006;22(11):981-987. https://doi.org/10.1016/j.dental.2005.11.021
  20. Freire LG, Carvalho CN, Ferrari PH, Siqueira EL, Gavini G. Influence of dentin on pH of 2% chlorhexidine gel and calcium hydroxide alone or in combination. Dent Traumatol. 2010;26(3):276-280. https://doi.org/10.1111/j.1600-9657.2010.00874.x
  21. Hara AT, Queiroz CS, Paes Leme AF, Serra MC, Cury JA. Caries progression and inhibition in human and bovine root dentine in situ. Caries Res. 2003;37(5):339-344. https://doi.org/10.1159/000072165
  22. Sanches RP, Otani C, Damiao AJ, Miyakawa W. AFM characterization of bovine enamel and dentine after acid-etching. Micron. 2009;40(4):502-506. https://doi.org/10.1016/j.micron.2008.12.001
  23. Sfondrini MF, Gatti S, Scribante A. Effect of blood contamination on shear bond strength of orthodontic brackets and disinclusion buttons. Br J Oral Maxillofac Surg. 2011;49(5):404-408. https://doi.org/10.1016/j.bjoms.2010.06.011
  24. Souza RO, Ozcan M, Mesquita AM, De Melo RM, Galhano GA, Bottino MA, et al. Effect of different polymerization devices on the degree of conversion and the physical properties of an indirect resin composite. Acta Odontol Latinoam. 2010;23(2):129-135.
  25. Walter R, Miguez PA, Pereira PN. Microtensile bond strength of luting materials to coronal and root dentin. J Esthet Restor Dent. 2005;17(3):165-171. https://doi.org/10.1111/j.1708-8240.2005.tb00107.x
  26. Wiegand A, Vollmer D, Foitzik M, Attin R, Attin T. Efficacy of different whitening modalities on bovine enamel and dentin. Clin Oral Investig. 2005;9(2):91-97. https://doi.org/10.1007/s00784-004-0291-2
  27. Soana S, Bertoni G, Gnudi G, Botti P. Anatomo-radiographic study of prenatal development of bovine fetal teeth. Anat Histol Embryol. 1997;26(2):107-113. https://doi.org/10.1111/j.1439-0264.1997.tb00108.x
  28. Ortiz-Ruiz AJ, Teruel-Fernandez JD, Alcolea-Rubio LA, Hernandez-Fernandez A, Martinez-Beneyto Y, Gispert-Guirado F. Structural differences in enamel and dentin in human, bovine, porcine, and ovine teeth. Ann Anat. 2018;218:7-17. https://doi.org/10.1016/j.aanat.2017.12.012
  29. Teruel JD, Alcolea A, Hernandez A, Ruiz AJ. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch Oral Biol. 2015;60(5):768-775. https://doi.org/10.1016/j.archoralbio.2015.01.014
  30. Wang C, Li Y, Wang X, Zhang L, Tiantang, Fu B. The enamel microstructures of bovine mandibular incisors. Anat Rec (Hoboken). 2012;295(10):1698-1706. https://doi.org/10.1002/ar.22543
  31. Silverstone LM, Saxton CA, Dogon IL, Fejerskov O. Variation in the pattern of acid etching of human dental enamel examined by scanning electron microscopy. Caries Res. 1975;9(5):373-387. https://doi.org/10.1159/000260179
  32. Tong LS, Pang MK, Mok NY, King NM, Wei SH. The effects of etching, micro-abrasion, and bleaching on surface enamel. J Dent Res. 1993;72(1):67-71. https://doi.org/10.1177/00220345930720011001
  33. Lopes FM, Markarian RA, Sendyk CL, Duarte CP, Arana-Chavez VE. Swine teeth as potential substitutes for in vitro studies in tooth adhesion: a SEM observation. Arch Oral Biol. 2006;51(7):548-551. https://doi.org/10.1016/j.archoralbio.2006.01.009
  34. Hobson RS, Rugg-Gunn AJ, Booth TA. Acid-etch patterns on the buccal surface of human permanent teeth. Arch Oral Biol. 2002;47(5):407-412. https://doi.org/10.1016/S0003-9969(02)00008-0
  35. Field JC, Waterhouse PJ, German MJ. The early erosive and abrasive challenge: a profilometric, electron microscopic and microhardness study using human, bovine and ovine enamel. Eur J Prosthodont Restor Dent. 2017;25(2):93-100.
  36. Braly A, Darnell LA, Mann AB, Teaford MF, Weihs TP. The effect of prism orientation on the indentation testing of human molar enamel. Arch Oral Biol. 2007;52(9):856-860. https://doi.org/10.1016/j.archoralbio.2007.03.005
  37. Popowics TE, Rensberger JM, Herring SW. Enamel microstructure and microstrain in the fracture of human and pig molar cusps. Arch Oral Biol. 2004;49(8):595-605. https://doi.org/10.1016/j.archoralbio.2004.01.016
  38. Koenigswald WV, Clemens WA. Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics. Scanning Microsc. 1992;6(1):195-217.
  39. Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch Oral Biol. 2002;47(4):281-291. https://doi.org/10.1016/S0003-9969(02)00006-7
  40. De Menezes Oliveira MA, Torres CP, Gomes-Silva JM, Chinelatti MA, De Menezes FC, Palma-Dibb RG, et al. Microstructure and mineral composition of dental enamel of permanent and deciduous teeth. Microsc Res Tech. 2010;73(5):572-577. https://doi.org/10.1002/jemt.20796