• Title/Summary/Keyword: scanning electron microsopy (SEM)

Search Result 6, Processing Time 0.022 seconds

Studies on the Fine Structure of Caeca in Domestic Geese

  • Chen, Yieng How;Hsu, Hoang Kao;Hsu, Jenn Chung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.1018-1021
    • /
    • 2002
  • The objective of this study was to investigate the villus distribution in the caeca of domestic geese based on the fine structure. The caeca of White Roman geese, 14-week old, were sampled and specimens were detected under photomicroscope and scanning electron microscope (SEM). The results indicated that the villi existed at the proximal caecum. The morphologies of these villi showed finger-like, peak-like or tongue-like shapes. The heights of the villi decreased far from the proximal caecum. No villi were found in the middle and distal caecum. It was obvious that the proximal segment was the main portion for absorbing food nutrients in the caeca. The caecal content particles were small and possessed a viscid character. The large particles filtered out at the proximal caecum just like a mesh. The surface of the middle caecum exhibited parallel ridges with no villi. There were band plicae circular shapes found in the middle caecum under scanning electron microsopy.

Optimal Electron Beam Characteristics by Lenses Analysis Using Scanning Electron Microscopy (주사전자현미경 렌즈의 해석을 통한 최적의 빔 특성 연구)

  • Bae, Jinho;Kim, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This paper presents a design method for optimizing the focused beam characteristics, which are mainly determined by the condenser lenses in a scanning electron microscopy (SEM) design. Sharply reducing the probe diameter of electron beams by focusing the condenser lens (i.e., the rate of condensation) is important because a small probe diameter results in high-performance demagnification. This study explored design parameters that contribute to increasing the SEM resolution efficiently using lens analysis and the ray tracing method. A sensitivity analysis was conducted based on those results to compare the effects of these parameters on beam focusing. The results of this analysis on the design parameters for the beam characteristics can be employed as basic key information for designing a column in SEM.

Morphology and Thermal Properties of PPS/ABS Blends (PPS/ABS 블렌드의 형태학적/열적 특성)

  • 이영관;김준명;남재도;박찬석;장승필
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.366-373
    • /
    • 2000
  • In this study, the PPS/ABS blend system was investigated in order to collectively identify the relationship among blend morphology, chemical compatibilization and thermal property. ABS resin was chemically modified by the incorporation of maleic anhydride through reactive extrusion for enhanced compatibilization, and PPS, ABS and the modified ABS were blend by a sing twin screw extruder. The effect of chemical modification of ABS on the morphological, mechanical, and thermal properities of the resulting blend was examined. A strong interaction was observed between PPS and MABS by optical microsopy as well as scanning electron microscopy, exhibiting a well-dispersed morphological feature. The PPS/MABS blend showing a single glass transition temperature was observed in dynamic mechanical analysis, demonstrating a pseudo-homogeneous phase morphology induced by chemical compatibilization. PPS/MABS blend also exhibited an enhanced thermal stability and heat distortion temperature compared with modified PPS/ABS blend.

  • PDF

인공피부 개발을 위한 생채 적합성 지지체에 관한 연구

  • Kim, Chang-Hwan;Kim, Cheon-Ho;Park, Hyeon-Suk;Gang, Hyeon-Ju;Han, Eun-Suk;Kim, Yun-Yeong;Choe, Yeong-Ju;Lee, Su-Hyeon;Choe, Tae-Bu;Son, Yeong-Suk
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.429-432
    • /
    • 2000
  • Chitosan scaffold is widely applied to drug delivery and tissue engineering. We have developed chitosan scaffolds, with various pore size, by differing freezing temperature and duration of ultraviolet (UV) irradiation, for reconstructing skin equivalent. Chitosan scaffold was coated with type I collagen, fibronectin and basic fibroblast growth factor (bFGF) in various combinations and concentrations, to evaluate the effect of extracellular matrix (ECM) and bFGF on cell adhesion, growth and differentiation of dermal fibroblasts. Human dermal fibroblasts, isolated from newborn foreskin and passaged between 3 and 5, were seeded on the top of scaffolds and cultivated for 2 weeks. We examined the morphology and the secretion of ECM of fibroblasts using scanning electron microsopy (SEM) and histochemistry. A stellate morphology of fibroblasts were seen in all groups. The scaffold coated with either type I collagen and bFGF or type I collagen and fibronectin, however, showed the best condtion of dermal fibroblasts, in that the highest cell number and ECM secretion were seen. On the contrary, scaffolds coated with all three factors, type I collagen, bFGF and fibronectin, showed lower number of cells and ECM secretion than scaffolds with two factors. There was a tendency of dose-dependence in all three factors for fibroblast growth and ECM secretion. In conclusion, we may suggest that chitosan scaffold coated with either type I collagen/bFGF or type I collagen/fibronectin could provide more favorable environment for the growth and differentiation of dermal fibroblasts.

  • PDF

Effect of Process Temperature on the Sm2Fe17 Alloying Process During a Reduction-Diffusion Process Using Fe Nanopowder (Fe 나노분말을 사용한 환원-확산공정에서 Sm2Fe17 합금상형성에 미치는 공정온도의 영향)

  • Yun, Joon-Chul;Lee, Geon-Yong;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.995-1002
    • /
    • 2010
  • This study investigated the effect of process temperature on the alloying process during synthesis of $Sm_2Fe_{17}$ powder from ball-milled samarium oxide ($Sm_2O_3$) powders and a solid reducing agent of calcium hydrides ($CaH_2$) using iron nanopowder (n-Fe powder) by a reduction-diffusion (R-D) process. The $n-Fe-Sm_2O_3-CaH_2$ mixed powders were subjected to heat treatment at $850{\sim}1100^{\circ}C$ in $Ar-H_2$ for 5 h. It was found that the iron nanopowders in the mixed powders are sintered below $850^{\circ}C$ during the R-D process and the $SmH_2$ is synthesized by a reduced Sm that combines with $H_2$ around $850^{\circ}C$. The results showed that $SmH_2$ is able to separate Sm and $H_2$ respectively depending on an increase in process temperature, and the formed $Sm_2Fe_{17}$ phase on the surface of the sintered Fe nanopowder agglomerated at temperatures of $950{\sim}1100^{\circ}C$ in this study. The formation of the $Sm_2Fe_{17}$ layer is mainly due to the diffusion reaction of Sm atoms into the sintered Fe nanopowder, which agglomerates above $950^{\circ}C$. We concluded that nanoscale $Sm_2Fe_{17}$ powder can be synthesized by controlling the diffusion depth using well-dispersed Fe nanopowders.

Intermetallic Compound Growth Characteristics of Cu/thin Sn/Cu Bump for 3-D Stacked IC Package (3차원 적층 패키지를 위한 Cu/thin Sn/Cu 범프구조의 금속간화합물 성장거동분석)

  • Jeong, Myeong-Hyeok;Kim, Jae-Won;Kwak, Byung-Hyun;Kim, Byoung-Joon;Lee, Kiwook;Kim, Jaedong;Joo, Young-Chang;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.180-186
    • /
    • 2011
  • Isothermal annealing and electromigration tests were performed at $125^{\circ}C$ and $125^{\circ}C$, $3.6{\times}10_4A/cm^2$ conditions, respectively, in order to compare the growth kinetics of the intermetallic compound (IMC) in the Cu/thin Sn/Cu bump. $Cu_6Sn_5$ and $Cu_3Sn$ formed at the Cu/thin Sn/Cu interfaces where most of the Sn phase transformed into the $Cu_6Sn_5$ phase. Only a few regions of Sn were not consumed and trapped between the transformed regions. The limited supply of Sn atoms and the continued proliferation of Cu atoms enhanced the formation of the $Cu_3Sn$ phase at the Cu pillar/$Cu_6Sn_5$ interface. The IMC thickness increased linearly with the square root of annealing time, and increased linearly with the current stressing time, which means that the current stressing accelerated the interfacial reaction. Abrupt changes in the IMC growth velocities at a specific testing time were closely related to the phase transition from $Cu_6Sn_5$ to $Cu_3Sn$ phases after complete consumption of the remaining Sn phase due to the limited amount of the Sn phase in the Cu/thin Sn/Cu bump, which implies that the relative thickness ratios of Cu and Sn significantly affect Cu-Sn IMC growth kinetics.