• Title/Summary/Keyword: scanning electron microscope(SEM) image

Search Result 93, Processing Time 0.021 seconds

A Study on the Microstructure and Thermal Sensor Devices of the Thin Films in the $BaTiO_3$ Systems ($BaTiO_3$계 세라믹의 미세구조와 열전센서에 관한 연구)

  • Song, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.135-139
    • /
    • 2005
  • Thin films of $BaTiO_3$ system were prepared by radio frequency(rf)/dc magnetron sputtering method. We have investigated crystal structure, surface morphology and PTCR(positive-temperature coefficient of resistance) characteristics of the specimen depending on second heat-treatment temperatures. Second heat treatments of the specimen were performed in the temperature range of 400 to $1350^{\circ}C$. X-ray diffraction patterns of $BaTiO_3$ thin films show that the specimen heat treated below $600^{\circ}C$ is an amorphous phase and the one heat treated above $1100^{\circ}C$ forms a poly-crystallization. In the specimen heat-treated at $1300^{\circ}C$, a lattice constant ratio (c/a) was 1.188. Scanning electron microscope(SEM) image of $BaTiO_3$ thin films of the specimen heat treated in between 900 and $1100^{\circ}C}$ shows a grain growth. At $1100^{\circ}C$, the specimen stops grain-growing and becomes a poly-crystallization.

  • PDF

PTCR Characteristics of BaTiO$_3$Thin Films made by rf/dc Magnetron Sputter Technique

  • Song, Min-Jong;So, Byung-Moom;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.28-31
    • /
    • 2000
  • BaTiO$_3$cerameic thin films doped with Mn were manufactured by rf/dc magnetron sputter technique. We have investigated crystal structure, surface morphology and PRCR(positive-temperature coefficient of resistance) characteristics of the specimen depending on second heat-treatment temperature. Second heat treatment of the specimen were performed in the temperature range of 400 to 1350$\^{C}$ X-ray diffraction patterns of BaTiO$_3$ thin films show that the specimen heat treated below 600$\^{C}$ is an amorphous phase and the one heat treated above 1100$\^{C}$ forms a poly-crystallization . In this specimen heat-treated at 1300$\^{C}$, a lattice constant ratio(c/a) was 1.188. Scanning electron microscope(SEM) image of BaTiO$_3$ thin films of the specimen heat treated in between 900 and 1100$\^{C}$ shows a grain growth. At 1100$\^{C}$, the specimen stops grain-growing and becomes a poly-crystallization . A resistivity-temperature characteristics of the specimen depends on the doping concentrations of Mn. A resistivity ratio between the value at room temperature and the one above Curie temperature was 10$^4$ for pure BaTiO$_3$ thin films and 10$\^$5/ fo BaTiO$_3$ : additive 0.127mol% MnO

  • PDF

Preparation of BaTiO3/Poly(vinylidene fluoride) 0-3 Composite Films for Dielectric Applications

  • Hwang, Kyu-Seog;Kang, Jong-Min;Lee, June-Ho;Hwangbo, Seung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1692-1696
    • /
    • 2018
  • Ferroelectric $BaTiO_3$/poly(vinylidene fluoride) (PVDF) nanocomposite films were successfully prepared by mixing $BaTiO_3$ nano-particles into PVDF solution dissolved in dimethylformamide under ultrasonification. The mixture was casted onto glass petri dish and then annealed at $100^{\circ}C$ for 12 h in vacuum dry oven. Crystal structure and surface morphology of the samples were analyzed by using an X-ray diffraction analysis and a field emission-scanning electron microscope, respectively. The relative dielectric permittivity and loss tangent were determined in the frequency range of 50 Hz to 1 MHz. For the $BaTiO_3/PVDF$ nanocomposites, the entire diffraction peaks match those indicated by standard $BaTiO_3$ perovskite structure. The FE-SEM image reveals the homogeneity of the $BaTiO_3$ nanopowder distribution and also predominant 0-3 connectivity. All results show that the dielectric properties of the nanocomposite films are desirable and the fabrication technique for preparing the $BaTiO_3/PVDF$ nanocomposites has a potential in the electronic applications.

Decomposition Behavior of Secondary Solidification Phase During Heat Treatment of Squeeze Cast Al-Cu-Si-Mg (용탕단조 Al-Cu-Si-Mg합금의 열처리시 제2응고상의 분해거동)

  • Kim, Yu-Chan;Kim, Do-Hyang;Han, Yo-Sub;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.560-568
    • /
    • 1997
  • The dissolution behavior of secondary solidification phases in squeeze cast Al-3.9wt%Cu-1.5wt%Si-1.0wt%Mg has been studied using a combination of optical microscope, image analyzer, scanning electron microscope(SEM), energy dispersive spectrometer(EDS), X-ray diffractometer(XRD) and differential thermal analyzer (DTA). Special emphasis was placed on the investigation of the effects of the nonequilibrium heat treatment on the dissolution of the second solidification phases. Ascast microstructure consisted of primary solidification product of ${\alpha}-Al$ and secondary solidification products of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$. Equilibrium and non-equilibrium solution treatments were carried out at the temperatures of $495^{\circ}C$, $502^{\circ}C$ and $515^{\circ}C$ for 3 to 5 hours. The amount of the dissolved secondary phases increased with increasing solution treatment temperature, for example, area fractions of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$ were approximately 0%, 1.6% and 4.2% after solution treatment at $495^{\circ}C$ for 5hours, and were approximately 0%, 0.36% and 2% after solution treatment at $515^{\circ}C$ for 5hours. The best combination of tensile properties was obtained when the as-cast alloy was solution treated at $515^{\circ}C$ for 3hours followed by aging at $180^{\circ}C$ for 10 hours. Detailed DTA and TEM study showed that the strengthening behavior during aging was due to enhanced precipitation of the platelet type fine ${\theta}'$ phase.

  • PDF

Effects of AlN buffer layer on optical properties of epitaxial layer structure deposited on patterned sapphire substrate (패턴화된 사파이어 기판 위에 증착된 AlN 버퍼층 박막의 에피층 구조의 광학적 특성에 대한 영향)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this research, 50 nm thick AlN thin films were deposited on the patterned sapphire (0001) substrate by using HVPE (Hydride Vapor Phase Epitaxy) system and then epitaxial layer structure was grown by MOCVD (metal organic chemical vapor deposition). The surface morphology of the AlN buffer layer film was observed by SEM (scanning electron microscopy) and AFM (atomic force microscope), and then the crystal structure of GaN films of the epitaxial layer structure was investigated by HR-XRC (high resolution X-ray rocking curve). The XRD peak intensity of GaN thin film of epitaxial layer structure deposited on AlN buffer layer film and sapphire substrate was rather higher in case of that on PSS than normal sapphire substrate. In AFM surface image, the epitaxial layer structure formed on AlN buffer layer showed rather low pit density and less defect density. In the optical output power, the epitaxial layer structure formed on AlN buffer layer showed very high intensity compared to that of the epitaxial layer structure without AlN thin film.

Characteristics of Indium Doped SnO2 Thick Film for Gas Sensors (Indium 첨가된 SnO2 후막형 가스센서의 특성)

  • Yu, Il;Lee, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.408-411
    • /
    • 2010
  • Indium doped $SnO_2$ thick films for gas sensors were fabricated by a screen printing method on alumina substrates. The effects of indium concentration on the structural and morphological properties of the $SnO_2$ were investigated by X-ray diffraction and Scanning Electron Microscope. The structural properties of the $SnO_2$:In by X-ray diffraction showed a (110) dominant $SnO_2$ peak. The size of $SnO_2$ particles ranged from 0.05 to $0.1\;{\mu}m$, and $SnO_2$ particles were found to contain many pores, according to the SEM analysis. The thickness of the indium-doped $SnO_2$ thick films for gas sensors was about $20\;{\mu}m$, as confirmed by cross sectional SEM image. Sensitivity of the $SnO_2$:In gas sensor to 2000 ppm of $CO_2$ gas and 50 ppm of H2S gas was investigated for various indium concentrations. The highest sensitivity to $CO_2$ gas and H2S gas of the indium-doped $SnO_2$ thick films was observed at the 8 wt% and 4 wt% indium concentration, respectively. The good sensing performances of indium-doped $SnO_2$ gas sensors to $CO_2$ gas were attributed to the increase of oxygen vacancies and surface area in the $SnO_2$:In. The $SnO_2$:In gas sensors showed good selectivity to $CO_2$ gas.

Evaluation of the effects of two novel irrigants on intraradicular dentine erosion, debris and smear layer removal

  • Gorduysus, Melahat;Kucukkaya, Selen;Bayramgil, Nursel Pekel;Gorduysus, Mehmet Omer
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.216-222
    • /
    • 2015
  • Objectives: To evaluate the effects of copolymer of acrylic acid and maleic acid (Poly[AA-co-MA]) and calcium hypochlorite ($Ca(OCl)_2$) on root canal dentin using scanning electron microscope (SEM). Materials and Methods: Twenty-four single-rooted teeth were instrumented and the apical and coronal thirds of each root were removed, leaving the 5 mm middle thirds, which were then separated into two pieces longitudinally. The specimens were randomly divided into six groups and subjected to each irrigant for 5 min as follows: G1, $Ca(OCl)_2$; G2, Poly(AA-co-MA); G3, $Ca(OCl)_2$ + Poly(AA-co-MA); G4, sodium hypochlorite (NaOCl); G5, ethylenediaminetetraacetic acid (EDTA); G6, NaOCl+EDTA. The specimens were prepared for SEM evaluation. Smear layer, debris and erosion scores were recorded by two blinded examiners. One image from G3 was analyzed with energy dispersive spectroscopy (EDS) on suspicion of precipitate formation. Data were analyzed using the Kruskal-Wallis and Dunn tests. Results: G1 and G4 showed the presence of debris and smear layer and they were statistically different from G2, G3, G5 and G6 where debris and smear layer were totally removed (p < 0.05). In G1 and G4, erosion evaluation could not be done because of debris and smear layer. G2, G3 and G5 showed no erosion, and there was no significant difference between them. G6 showed severe erosion and was statistically different from G2, G3 and G5 (p < 0.05). EDS microanalysis showed the presence of Na, P, and Ca elements on the surface. Conclusions: Poly(AA-co-MA) is effective in removing the smear layer and debris without causing erosion either alone or with $Ca(OCl)_2$.

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour;Moosa Mazloom
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.467-484
    • /
    • 2023
  • Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

Electrical Properties in $Pt/SrTiO_3/Pb_x(Zr_{0.52}, Ti_{0.48})O_3/SrTiO_3/Si$ Structure and the Role of $SrTiO_3$ Film as a Buffer Layer ($Pt/SrTiO_3/Pb_x(Zr_{0.52}, Ti_{0.48})O_3/SrTiO_3/Si$ 구조의 전기적 특성 분석 및 $SrTiO_3$박막의 완충층 역할에 관한 연구)

  • 김형찬;신동석;최인훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.436-441
    • /
    • 1998
  • $Pt/SrTiO_3/Pb_x(Zr_{0.52}, Ti_{0.48})O_3/SrTiO_3/Si$ structure was prepared by rf-magnetron sputtering method for use in nondestructive read out ferroelectric RAM(NDRO-FEAM). PBx(Zr_{0.52}Ti_{0.48})O_3}$(PZT) and $SrTiO_3$(STO) films were deposited respectively at the temperatures of $300^{\circ}C and 500^{\circ}C$on p-Si(100) substrate. The role of the STO film as a buffer layer between the PZT film and the Si substrate was studied using X-ray diffraction (XRD), Auger electron spectroscopy (ASE), and scanning electron microscope(SEM). Structural analysis on the interfaces was carried out using a cross sectional transmission electron microscope(TEM). For PZT/Si structure, mostly Pb deficient pyrochlore phase was formed due to the serious diffusion of Pb into the Si substrate. On the other hand, for STO/PZT/STO/Si structure, the PZT film had perovskite phase and larger grain size with a little Pb interdiffusion. the interfaces of the PZT and the STO film, of the STO film and the interface layer and $SiO_2$, and of the $SiO_2$ and the Si substate had a good flatness. Across sectional TEM image showed the existence of an amorphous layer and $SiO_2$ with 7nm thickness between the STO film and the Si substrate. The electrical properties of MIFIS structure was characterized by C-V and I-V measurements. By 1MHz C-V characteristics Pt/STO(25nm)/PZT(160nm)/STO(25nm)/Si structure, memory window was about 1.2 V for and applied voltage of 5 V. Memory window increased by increasing the applied voltage and maximum voltage of memory window was 2 V for V applied. Memory window decreased by decreasing PZT film thickness to 110nm. Typical leakage current was abour $10{-8}$ A/cm for an applied voltage of 5 V.

  • PDF

The Fabrication and Characterization of Embedded Switch Chip in Board for WiFi Application (WiFi용 스위치 칩 내장형 기판 기술에 관한 연구)

  • Park, Se-Hoon;Ryu, Jong-In;Kim, Jun-Chul;Youn, Je-Hyun;Kang, Nam-Kee;Park, Jong-Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.3
    • /
    • pp.53-58
    • /
    • 2008
  • In this study, we fabricated embedded IC (Double Pole Double throw switch chip) polymer substrate and evaluate it for 2.4 GHz WiFi application. The switch chips were laminated using FR4 and ABF(Ajinomoto build up film) as dielectric layer. The embedded DPDT chip substrate were interconnected by laser via and Cu pattern plating process. DSC(Differenntial Scanning Calorimetry) analysis and SEM image was employed to calculate the amount of curing and examine surface roughness for optimization of chip embedding process. ABF showed maximum peel strength with Cu layer when the procuring was $80\sim90%$ completed and DPDT chip was laminated in a polymer substrate without void. An embedded chip substrate and wire-bonded chip on substrate were designed and fabricated. The characteristics of two modules were measured by s-parameters (S11; return loss and S21; insertion loss). Insertion loss is less than 0.55 dB in two presented embedded chip board and wire-bonded chip board. Return loss of an embedded chip board is better than 25 dB up to 6 GHz frequency range, whereas return loss of wire-bonding chip board is worse than 20 dB above 2.4 GHz frequency.

  • PDF