• Title/Summary/Keyword: scaling method

Search Result 1,058, Processing Time 0.025 seconds

Application of Multidimensional Scaling Method for E-Commerce Personalized Recommendation (전자상거래 개인화 추천을 위한 다차원척도법의 활용)

  • Kim Jong U;Yu Gi Hyeon;Easley Robert F.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.93-97
    • /
    • 2002
  • In this paper, we propose personalized recommendation techniques based on multidimensional scaling (MDS) method for Business to Consumer Electronic Commerce. The multidimensional scaling method is traditionally used in marketing domain for analyzing customers' perceptional differences about brands and products. In this study, using purchase history data, customers in learning dataset are assigned to specific product categories, and after then using MDS a positioning map is generated to map product categories and alternative advertisements. The positioning map will be used to select personalized advertisement in real time situation. In this paper, we suggest the detail design of personalized recommendation method using MDS and compare with other approaches (random approach, collaborative filtering, and TOP3 approach)

  • PDF

A Study on Development of Brand Positioning Map for Ladies' Ready-to-Wear Utilizing Multidimensional Scaling Method (다차원척도법을 이용한 여성기성복 상표 포지셔닝 연구)

  • Oh Hyun-Ju;Rhee Eun-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 1990
  • The purpose of the study was to develope brand positioning map for ladies' ready-to-wear, to find out evaluative criteria in perception and preference to brands, and to persent the relationship between consumer's characteristics and brand preference. Subjects were selected for the housewives of middle and high socioeconomic classes living in Seoul area. A questionnaire including items of life style, self image, similarity between brands, preference degree to brands, and demographic variables was developed for the empirical study. The questionnaire was administrated to 137 housewives during fall in 1989. Data were analyzed by cluster analysis and multidimensional scaling method. The study had two research problems. The first research problem was to construct a brand perceptual map for ladies' ready-to-wear brands, selected for the study The perceptual map was constructed on the basis of brand similarity scores by multidimensional scaling method. As a result, brands were grouped into 4 clusters, and evaluative criteria for perceptual map were found to be fashionability (classic- fashionable) and familiarity (familiar-unfamiliar). The second problem was to construct a brand preference map for ladies' ready-to-wear brands, selected for the study. The preference map was constructed on the basis of brand preference scores by multidimensional scaling method. As a result, the brands were grouped into 4 clusters and evaluative critiera for preference map were found to be fashionability (unfashionable-fashionable) and image to age (mature-young directed). Also was shown the relationship among self image, age, socioeconomic class, and brand preference. The multidimensional scaling method was found to be useful as well as valid instrument for brand positioning research and the result can be utilized for establishing strategies for ladies' ready-to-wear brands.

  • PDF

Improved Multidimensional Scaling Techniques Considering Cluster Analysis: Cluster-oriented Scaling (클러스터링을 고려한 다차원척도법의 개선: 군집 지향 척도법)

  • Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.2
    • /
    • pp.45-70
    • /
    • 2012
  • There have been many methods and algorithms proposed for multidimensional scaling to mapping the relationships between data objects into low dimensional space. But traditional techniques, such as PROXSCAL or ALSCAL, were found not effective for visualizing the proximities between objects and the structure of clusters of large data sets have more than 50 objects. The CLUSCAL(CLUster-oriented SCALing) technique introduced in this paper differs from them especially in that it uses cluster structure of input data set. The CLUSCAL procedure was tested and evaluated on two data sets, one is 50 authors co-citation data and the other is 85 words co-occurrence data. The results can be regarded as promising the usefulness of CLUSCAL method especially in identifying clusters on MDS maps.

Fractal Scaling of Permeability in Unsaturated Fractured Tuff: Wavelet-Based Approach

  • Hyun, Yunjung
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.140-143
    • /
    • 2003
  • Air permeabilities in unsaturated fractured tuff at the Apache Leap Research Site (ALRS) near Superior, Arizona, exhibit a self-affine behavior, thus renders a field random fractal. Based up fractal scaling, the observed scale effect has been interpreted [Hyun et al., 2002]. Recently, Frantziskonis and Hansen [2000] presented that fractal scaling can be represented based on wavelets. This study deals with the way of using wavelets for fractal scaling. A numerical study is presented to examine the applicability of wavelet-based approach to determining upscaled air permeability values on various data supports at the site. To characterize the scaling property of self-affine fields generated based upon wavelets, Hurst coefficient, H. was inferred by applying the average wavelet coefficient (AWC) method. The result yielded H = 0.24, which is very close to the result of geostatistical analysis using a power variogram (H = 0.22). The study concludes that wavelet-based scaling is a useful way of determining parameter values on different data supports, which is an essential task for modeling of subsurface flow and mass transport in a numeric grid with different resolutions (grid size).

  • PDF

Evaluation of ground motion scaling methods on drift demands of energy-based plastic designed steel frames under near-fault pulse-type earthquakes

  • Ganjavi, Behnoud;Hadinejad, Amirali;Jafarieh, Amir Hossein
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.91-110
    • /
    • 2019
  • In the present study, the effects of six different ground motion scaling methods on inelastic response of nonlinear steel moment frames (SMFs) are studied. The frames were designed using energy-based PBPD approach with the design concept using pre-selected target drift and yield mechanism as performance limit state. Two target spectrums are considered: maximum credible earthquake spectrum (MCE) and design response spectrum (DRS). In order to investigate the effects of ground motion scaling methods on the response of the structures, totally 3216 nonlinear models including three frames with 4, 8 and 16 stories are designed using PBPD approach and then they are subjected to ensembles of ground motions including 42 far-fault and 90 near-fault pulse-type records which were scaled using the six different scaling methods in accordance to the two aforementioned target spectrums. The distributions of maximum inter-story drift over the height of the structures are computed and compared. Finally, the efficiency and reliability of each ground motion scaling method to estimate the maximum nonlinear inter-story drift of special steel moment frames designed by energy-based PBPD approach are statistically investigated, and the most suitable scaling methods with the lowest dispersion for two groups of earthquake ground motions are introduced.

The effect of dental scaling noise during intravenous sedation on acoustic respiration rate (RRaTM)

  • Kim, Jung Ho;Chi, Seong In;Kim, Hyun Jeong;Seo, Kwang-Suk
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.2
    • /
    • pp.97-103
    • /
    • 2018
  • Background: Respiration monitoring is necessary during sedation for dental treatment. Recently, acoustic respiration rate ($RRa^{TM}$), an acoustics-based respiration monitoring method, has been used in addition to auscultation or capnography. The accuracy of this method may be compromised in an environment with excessive noise. This study evaluated whether noise from the ultrasonic scaler affects the performance of RRa in respiratory rate measurement. Methods: We analyzed data from 49 volunteers who underwent scaling under intravenous sedation. Clinical tests were divided into preparation, sedation, and scaling periods; respiratory rate was measured at 2-s intervals for 3 min in each period. Missing values ratios of the RRa during each period were measuerd; correlation analysis and Bland-Altman analysis were performed on respiratory rates measured by RRa and capnogram. Results: Respective missing values ratio from RRa were 5.62%, 8.03%, and 23.95% in the preparation, sedation, and scaling periods, indicating an increased missing values ratio in the scaling period (P < 0.001). Correlation coefficients of the respiratory rate, measured with two different methods, were 0.692, 0.677, and 0.562 in each respective period. Mean capnography-RRa biases in Bland-Altman analyses were -0.03, -0.27, and -0.61 in each respective period (P < 0.001); limits of agreement were -4.84-4.45, -4.89-4.15, and -6.18-4.95 (P < 0.001). Conclusions: The probability of missing respiratory rate values was higher during scaling when RRa was used for measurement. Therefore, the use of RRa alone for respiration monitoring during ultrasonic scaling may not be safe.

A Study on the Performance Analysis of 4-ary Scaling Wavelet Shift Keying (4-ary 스케일링 웨이브릿 편이 변조 시스템의 성능 분석에 관한 연구)

  • Jeong, Tae-Il;Ryu, Tae-Kyung;Kim, Jong-Nam;Moon, Kwang-Seok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1155-1163
    • /
    • 2010
  • An algorithm of the conventional wavelet shift keying is carried out that the scaling function and wavelet are encoded to 1(mark) and 0(space) for the input binary data, respectively. Two bit modulation technique which uses four carrier frequencies is existed. Four carrier frequencies are defined as scaling function, inversed scaling function, wavelet, and inversed wavelet, which are encoded to 10, 11, 00 and 01, respectively. In this paper, we defined 4-ary SWSK (4-ary scaling wavelet shift keying) which is two bit modulation, and it is derived to the probability of bit error and symbol error of the defined system from QPSK. In order to analyze to the performance of 4-ary SWSK, we are obtained in terms of the probability of bit error and symbol error for QPSK (quadrature phase shift keying), MFSK(M-ary frequency shift keying) and proposed method. As a results of simulation, we confirmed that the proposed method was superior to the performance in terms of the probability of bit error and symbol error.

Analysis of Scaling Parameters of the Batch Unscented Transformation for Precision Orbit Determination using Satellite Laser Ranging Data

  • Kim, Jae-Hyuk;Park, Sang-Young;Kim, Young-Rok;Park, Eun-Seo;Jo, Jung-Hyun;Lim, Hyung-Chul;Park, Jang-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.183-192
    • /
    • 2011
  • The current study analyzes the effects of the scaling parameters of the batch unscented transformation on precision satellite orbit determination. Satellite laser ranging (SLR) data are used in the orbit determination algorithm, which consists of dynamics model, observation model and filtering algorithm composed of the batch unscented transformation. TOPEX/Poseidon SLR data are used by utilizing the normal point (NP) data observed from ground station. The filtering algorithm includes a repeated series of processes to determine the appropriate scaling parameters for the batch unscented transformation. To determine appropriate scaling parameters, general ranges of the scaling parameters of ${\alpha}$, ${\beta}$, k, $\lambda$ are established. Depending on the range settings, each parameter was assigned to the filtering algorithm at regular intervals. Appropriate scaling parameters are determined for observation data obtained from several observatories, by analyzing the relationship between tuning properties of the scaling parameters and estimated orbit precision. The orbit determination of satellite using the batch unscented transformation can achieve levels of accuracy within several tens of cm with the appropriate scaling parameters. The analyses in the present study give insights into the roles of scaling parameters in the batch unscented transformation method.

A Study on the Impedance Scaled Tele-Nanomanipulation in a Nanoscale Virtual Environment (나노 스케일 가상환경에서의 나노-원격 조작의 임피던스 스케일링에 관한 연구)

  • Kim, Sung-Gaun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1401-1407
    • /
    • 2006
  • In a haptic interface system with a nanoscale virtual environment (NVE) using an atomic force microscope (AFM), impedance scaling is important. In order to explicitly derive the relationship between performance and impedance scaling factors, a nanoscale virtual coupling (NSVC) concept and a selection method of scaling factors of velocity (or position) and force are introduced. An available scaling factor region is represented based on Llewellyn's absolute stability criteria and the physical limitation of the haptic device. Experiments have been performed for tele-nanomanipulation tasks such as positioning, indenting and nanolithography with available force scaling factor in the NVE.

Effects of ground motion scaling on nonlinear higher mode building response

  • Wood, R.L.;Hutchinson, T.C.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.869-887
    • /
    • 2012
  • Ground motion scaling techniques are actively debated in the earthquake engineering community. Considerations such as what amplitude, over what period range and to what target spectrum are amongst the questions of practical importance. In this paper, the effect of various ground motion scaling approaches are explored using three reinforced concrete prototypical building models of 8, 12 and 20 stories designed to respond nonlinearly under a design level earthquake event in the seismically active Southern California region. Twenty-one recorded earthquake motions are selected using a probabilistic seismic hazard analysis and subsequently scaled using four different strategies. These motions are subsequently compared to spectrally compatible motions. The nonlinear response of a planar frameidealized building is evaluated in terms of plasticity distribution, floor level acceleration and uncorrelated acceleration amplification ratio distributions; and interstory drift distributions. The most pronounced response variability observed in association with the scaling method is the extent of higher mode participation in the nonlinear demands.