• 제목/요약/키워드: scaled model tests

Search Result 218, Processing Time 0.027 seconds

An Experimental Study on the Manoeuvrability of a Ship in Different GM and Trim Conditions (GM 및 종경사 변경에 따른 선박의 조종성능변화에 관한 실험적 연구)

  • Yun, Kunhang;Kim, Dong Jin;Yeo, Dong Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.230-240
    • /
    • 2020
  • The aim of this study was to investigate the manoeuvrability of a ship in different Center of Gravity (CG) conditions. Free Running Model Tests (FRMT), such as 35°turning circle tests, 20/20 zigzag manoeuvring tests, and 10/10 zigzag manoeuvring tests, were conducted in three GM and three trim conditions with 1/65.83 scaled KRISO Container Ship (KCS). The test results indicated that KCS in the lower GM condition and the trim by bow condition showed reduced advance and tactical diameter in turning circle tests and increased overshoot angles in zigzag tests, and those manoeuvring indices were strongly related with roll angle. In addition, sensitivity indices for three-axis CG position were suggested with prior research, and it showed that y-axis CG position significantly affected manoeuvrability of KCS due to the low GM. Therefore, in the case of KCS, it is evident that the roll angle during manoeuvre is closely related with manoeuvring indices.

Nonlinear analysis of RC structure with massive infill wall exposed to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.811-828
    • /
    • 2016
  • This study aims to present nonlinear time history analysis results of double leaf cavity wall (DLCW) reinforced concrete structure exposed to shake table tests. Simulation of the model was done by a Finite Element (FE) program. Shake table experiment was performed at the National Civil Engineering Laboratory in Lisbon, Portugal. The results of the experiment were compared with numeric DLCW model and numeric model of reinforced concrete structure with unreinforced masonry wall (URM). Both DLCW and URM models have two bays and two stories. Dimensions of the tested structure and finite element models are 1:1.5 scaled according to Cauchy Froude similitude law. The URM model has no experimental results but the purpose is to compare their performance level with the DLCW model. Results of the analysis were compared with experimental response and were evaluated according to ASCE/SEI 41-06 code.

A Study on the Characteristics of Stress Transfer around Cavern due to Cavern size and Rock Joint Orientation by Laboratory Model Test (모형실험을 통한 공동규모와 절리 방향성에 따른 공동배면의 응력전이 특성에 대한 연구)

  • Kim, Sang-Hwan;Shin, Beom-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.595-606
    • /
    • 2009
  • This paper presents the characteristics of stress transfer around carven due to cavern size and rock joint properties by laboratory model test. In order to perform this study, eight different scaled model tests were carried out according to excavation stage. The limited numerical analysis were also performed to verify the model test results. The amount of stress transfer around the cavern is increased and then decreased by longitudinal arching effect according to tunnel excavation. It is founded that the stress developed around the cavern during excavation is increased when the cavern size and joint orientation are increased. It is also investigated that shear behaviour (such as stress, deformation) developed around cavern is considerably depended on the characteristic of fill material, dip and direction of joints. It is suggested that the behaviour will be verified throughout the 3D numerical prediction.

  • PDF

Analysis of the Structural Behaviors of Tunnel Linings in Joomunjin Standard Sand by Centrifugal Model Tests (원심모형실험에 의한 사질토 지반내 터널 복공의 역학적 거동에 관한 연구)

  • 김택곤;김영근;박중배;이희근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.161-168
    • /
    • 1999
  • A series of centrifuge model tests were performed in order to investigate the behaviors of various tunnel linings. A 1/100-scaled aluminum and hydrostone horseshoe tunnel linings with a radius km, height km were buried in a depth of C/D=3 with dry Joomunjin standard sand, the relative density of which was 86%. Bending moments and thrusts along the tunnel circumference were measured by 12 strain gages. Earth pressures in soil and on lining were estimated by pressure transducers, ground surface settlements at center and edges by using LVDTs. Average Ko(coefficient of earth pressure at rest) was 0.39 for the model sand. The structural behaviors of lining depended on its damaged conditions. But, as a rule, on the crown, the tensile circumferential strain of lining occurred at the inner surface, and the compressive at the outer surface, then positive bending moment was created at the crown. The circumferential strain of the inner surface on the springline was tensile, and the outer compressive, so negative bending moment was measured at the springline. For hydrostone linings, cracks initiated at the inner surface on the crown, and the outer on the springline over average 40g.

  • PDF

Separate and integral effect tests of aerosol retention in steam generator during tube rupture accident

  • Lee, Byeonghee;Kim, Sung-Il;Ha, Kwang Soon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2702-2713
    • /
    • 2022
  • A steam generator tube rupture accompanying a core damage may cause the fission product to be released to environment bypassing the containment. In such an accident, the steam generator is the major path of the radioactive aerosol release. AEOLUS facility, the scaled-down model of Korean type steam generator, was built to examine the aerosol removal in the steam generator during the steam generator tube rupture accident. Integral and separate effect tests were performed with the facility for the dry and flooded conditions, and the decontamination factors were presented for different tube configurations and submergences. The dry test results were compared with the existing test results and with the analyses to investigate the aerosol retention physics by the tube bundle, with respect to the particle size and the bundle geometry. In the flooded tests, the effect of submergence were shown and the retention in the jet injection region were presented with respect to the Stokes number. The test results are planned to be used to constitute the aerosol retention model, specifically applicable for the analysis of the steam generator tube rupture accident in Korean nuclear power plants to evaluate realistic fission product behavior.

Retrofitting Effects and Structural Behavior of RC Columns Strengthened with X-Bracing Using Carbon Fiber Anchor (탄소섬유 앵커 X-브레이싱으로 보강된 철근콘크리트 기둥의 구조거동 및 내진보강 효과)

  • Sim, Jong-Sung;Lee, Kang-Seok;Kwon, Hyuck-Woo;Kim, Hyun-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.323-331
    • /
    • 2012
  • This paper presents a new strengthening method on concrete column against seismic loads for structural performance tests. An X-bracing using high performance carbon fiber threads called the "Carbon fiber anchor X-bracing system" is used to connect RC frames internally. The carbon fiber sheet is wrapped around the column to fix the top and bottom of the column after Super anchor was installed by drilling hole on the column. The structural performance was evaluated experimentally and analytically. Two types of columns specimens were made; flexure fracture scaled model and shear fracture scaled model. For the performance evaluation, cyclic loading tests were conducted on moment and shear resisting columns with and without X bracing. Test results confirmed that the bracing system installed on RC columns enhanced the strength capacity and provided adequate ductility.

Analysis of Correlativity with the Number of Blasting Holes Due to Exposed Length of Steel Bars and Vertical Load on Scaled Reinforced Concrete Columns (축소모형 철근콘크리트 기둥에서 철근의 노출길이와 수직하중에 따른 발파공수와의 상관성 분석)

  • Park, Hoon;Yoo, Ji-Wan;Lee, Hee-Gwang;Song, Jung-Un;Kim, Sung-Kon
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, the 1/5 scale models of the reinforced concrete colunms were designed and fabricated. The influence of the number of blasting holes on the exposed length of steel bars and vertical load was investigated. The relation between the length of steel bar and the number of blasting holes was examined by performing the blast tests considering the vertical load on the scaled reinforced concrete columns. Weight of scaled column models by blasting and that of exposed was compared with the number of blasting holes. Finally, based on the exposed length of steel bars and vertical load, the number of blasting holes were calculated. Results shows that the number of blasting holes calculated in this study are suitable for scaled structure models test by blasting demolition.

An Experimental Study on the Manoeuvrability of a Ship in Heeled Condition (횡경사상태 선박의 조종성능변화에 관한 실험적 연구)

  • Yun, Kunhang;Yeo, Dong Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.273-280
    • /
    • 2019
  • Predicting ship manoeuvrability is attracting widespread interest in the field of analyzing maritime accident to simulate a highly accurate track of a ship in abnormal accident situations. This study investigated the manoeuvrability of a ship in abnormally heeled condition. Free Running Model Tests (FRMT) with 1/65.83 scaled KCS (KRISO container ship) were conducted in three heeled conditions; $35^{\circ}$ turning circle tests and 20/20 zigzag manoeuvring tests were conducted in $0^{\circ}$, $-10^{\circ}$, and $-20^{\circ}$ conditions. The test results showed that the heeled to port condition significantly affected starboard turning and zigzag characteristics; the tactical diameters in the turning circle tests decreased, and the first overshoot angles in the zigzag tests increased when the ship was in the larger heeled condition. These results indicate that the roll angle of the ship considerably affects yaw rate and speed decrease of the ship. The turning and zigzag indices from trajectory and navigation data in the study were provided for benchmark data sets.

Shear Strength and Compressibility of Oyster Shell-Sand Mixtures for Sand Compaction Pile (SCP공법 적용을 위한 굴패각-모래 혼합토의 전단과 압축특성)

  • Yoon Gil-Lim;Yoon Yeo-Won;Chae Kwang-Seok;Kim Jae-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.17-23
    • /
    • 2004
  • Strength and deformation characteristics of oyster shell-sand mixtures were investigated to utilize waste oyster shell being treated as a waste material. Standard penetration test (SPT) is a common method to obtain in-situ strength in sand. However, in case of oyster shell-sand mixtures, there was no information between SPT N-value and internal friction angle of mixture soils. In this paper SPT experiments from several large scaled model chamber tests and large scaled direct shear tests were carried out with varying unit weight of oyster shell-sand mixtures. Appropriate correlations were in tile study observed among N-value, unit weight and internal friction angle, which make it possible to estimate in-situ strength from SPT and the coefficient of volume compressibility from the confined compression tests to compute the settlement of oyster shell-sand mixtures.

Model Test of Pulse Powered Underreamed Anchors (펄스방전 확공형 앵커의 모형시험)

  • Kim, Nak-Kyung;Ju, Yonh-Sun;Kim, Sung-Kyu;Seo, Hyo-Kyun;Kim, Sun-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1007-1013
    • /
    • 2008
  • In this study, a series of scaled model test were carried out in order to find factors that influence the ultimate load of underreamed anchors. Model anchors were made of arcril and 3cm in diameter. Series of tests were performed with various conditions such as density of soil, diameter of bulb, and number of bulb. Type of soil was Jumunjin sand and relative density varied 40%, 60%, 80%.

  • PDF