• 제목/요약/키워드: scale-model

검색결과 8,414건 처리시간 0.047초

A study of origins and characteristics of metallic elements in PM10 and PM2.5 at a suburban site in Taean, Chungchengnam-do (충청남도 태안 교외대기 PM10, PM2.5의 중금속 농도 특성과 기원 추적연구)

  • Sangmin Oh;Suk-Hee Yoon;Jaeseon Park;Yu-Jung Heo;Soohyung Lee;Eun-Jin Yoo;Min-Seob Kim
    • Particle and aerosol research
    • /
    • 제19권4호
    • /
    • pp.111-128
    • /
    • 2023
  • Chungcheongnam-do has various emission sources, including large-scale facilities such as power plants, steel and petrochemical industry complexes, which can lead to the severe PM pollution. Here, we measured concentrations of PM10, PM2.5, and its metallic elements at a suburban site in Taean, Chungcheongnam-do from September 2017 to June 2022. During the measurement period, the average concentrations of PM10 and PM2.5 were 58.6 ㎍/m3 (9.6~379.0 ㎍/m3) and 35.0 ㎍/m3 (6.1~132.2 ㎍/m3), respectively. The concentration of PM10 and PM2.5 showed typical seasonal variation, with higher concentration in winter and lower concentration in summer. When high concentrations of PM2.5 occurred, particulary in winter, the fraction of Zn and Pb components considerably increased, indicating a significant contribution of Zn and Pb to high-PM2.5 concentration. In addition, Zn and Pb exhibited the highest correlation coefficient among all other metallic elements of PM2.5. A backward trajectory cluster analysis and CPF model were performed to examine the origin of PM2.5. The high concentration of PM2.5 was primarily influenced by emissions from industrial complexes located in the northeast and northwest areas.

A Study on the Quality of Healthcare Services for Four Critical Illnesses and the Maintenance of Right to Protection and Dignity in a Senior General Hospital (상급종합병원의 4대 중증질환 의료 서비스 품질과 보호받을 권리 및 존엄성 유지에 관한 연구)

  • Woojin Lee;Minsuk Shin
    • Journal of Korean Society for Quality Management
    • /
    • 제51권4호
    • /
    • pp.531-550
    • /
    • 2023
  • Purpose: The unique nature of life-and-death healthcare services sets them apart from other service industries. While many studies exist on the relationship between healthcare services and customer satisfaction, most of them focus on mildly ill patients, ignoring the differences between critically ill and non-seriously ill patients. This study discusses the actual quality of healthcare services for patients who are facing life-threatening illnesses and are on life support, as well as their right to protection and dignity. Methods: The survey conducted to 149 patients with the four major illnesses: cancer, heart disease, brain disease and rare and incurable disease, those who have experiences with senior general hospitals. Results: The basic statistics of this study are adequate to represent the four major critical illnesses, and the reliability and validity of this study's hypotheses, which were measured by multiple items, were analyzed, and the internal consistency was judged to be high. In addition, it was found that the convergent validity was good and the discriminant validity was also secured. When examining the goodness of fit of the hypotheses, the SRMR, which is the standardized root mean square of residuals that measures the difference between the covariance matrix of the data variables and the theoretical covariance matrix structure of the model, met the optimal criteria. Conclusion: The academic implications of this study are differentiated from other studies by moving away from evaluating the quality of healthcare services for mildly ill patients and focusing on the rights and dignity of patients with life-threatening illnesses in four senior general hospitals. In terms of academic implications, this study enriches the depth of related studies by demonstrating the right to protection and dignity as a factor of patient-centeredness based on physical environment quality, interaction quality, and outcome quality, which are presented as sub-factors of healthcare quality. We found that the three quality factors classified by Brady and Cronin (2001) are optimized for healthcare quality assessment and management, and that the results of patients' interaction quality assessment can be used to provide a comprehensive quality rating for hospitals. Health and human rights are inextricably linked, so assessing the degree to which rights and dignity are protected can be a superior and more comprehensive measurement tool than traditional health level measures for healthcare organizations. Practical implications: Improving the quality of the physical environment and the quality of outcomes is an important challenge for hospital managers who attract patients with life and death conditions, but given the scale and economics of time, money, and human inputs, improving the quality of interactions and defining them as performance indicators in hospital quality management is an efficient way to create maximum value in the short term.

A Study on Metadata Design for Managing Person and Organization Names in the National Debt Redemption Movement Digital Archive (국채보상운동 디지털 아카이브의 개인/단체명 관리를 위한 메타데이터 설계에 관한 연구)

  • Sangeun Han;Seulki Do
    • Journal of the Korean Society for information Management
    • /
    • 제41권1호
    • /
    • pp.509-536
    • /
    • 2024
  • The purpose of this study is to develop a metadata AP for managing the person and organization name authority data in the National Debt Redemption Movement Digital Archive, a small-scale digital archive. The design principles and core metadata elements were derived by analyzing person/organization(group or corporateBody) metadata standards, implementation practices, and guidelines of libraries and archives, and mapped to the National Debt Redemption Movement person/organization name thesaurus data and the Wikidata Linked Metadata Model, resulting in 10 elements in the identification area, 14 elements in the content area, 8 elements in the relationship area, and 4 elements in the control area. A simple structure schema was applied so that it can be applied even in small organizations, and for interoperability, the schema was proposed with reference to DublinCore and SKOS schemes, and the applicability was confirmed based on actual data. The results of this study can be utilized as a basis for institutions that recognize the importance of data management but have difficulty in applying it in practice, when they want to prepare a system for managing their own authority data.

Quantifying forest resource change on the Korean Peninsula using satellite imagery and forest growth models (위성영상과 산림생장모형을 활용한 한반도 산림자원 변화 정량화)

  • Moonil Kim;Taejin Park
    • Korean Journal of Environmental Biology
    • /
    • 제42권2호
    • /
    • pp.193-206
    • /
    • 2024
  • This study aimed to quantify changes in forest cover and carbon storage of Korean Peninsular during the last two decades by integrating field measurement, satellite remote sensing, and modeling approaches. Our analysis based on 30-m Landsat data revealed that the forested area in Korean Peninsular had diminished significantly by 478,334 ha during the period of 2000-2019, with South Korea and North Korea contributing 51.3% (245,725 ha) and 48.6% (232,610 ha) of the total change, respectively. This comparable pattern of forest loss in both South Korea and North Korea was likely due to reduced forest deforestation and degradation in North Korea and active forest management activity in South Korea. Time series of above ground biomass (AGB) in the Korean Peninsula showed that South and North Korean forests increased their total AGB by 146.4Tg C (AGB at 2020=357.9Tg C) and 140.3Tg C (AGB at 2020=417.4Tg C), respectively, during the last two decades. This could be translated into net AGB increases in South and North Korean forests from 34.8 and 29.4 Mg C ha-1 C to 58.9(+24.1) and 44.2(+14.8) Mg C ha-1, respectively. It indicates that South Korean forests are more productive during the study period. Thus, they have sequestered more carbon. Our approaches and results can provide useful information for quantifying national scale forest cover and carbon dynamics. Our results can be utilized for supporting forest restoration planning in North Korea

The Change of Tourism Industry Efficiency in Heilongjiang Province under the Background of Northeast Revitalization Strategy (동북진흥전략 배경하에서 흑룡강성 관광산업의 효율성 변화)

  • Lei Wang;Gi young Chung
    • Industry Promotion Research
    • /
    • 제9권3호
    • /
    • pp.295-309
    • /
    • 2024
  • With the implementation of the Northeast Revitalization Strategy, the tourism industry in Heilongjiang Province had an increasingly greater impact on regional economic development. Based on the tourism panel data of Heilongjiang Province from 2005 to 2021, this paper used DEA-BCC and Malmquist Index to analyze the static and dynamic changes of the tourism industry.The results of the study were as follows: (1) Static: The OE value reached strong DEA effectiveness in 2010, 2013, and 2019, indicated that tourism resources had been fully utilized. The SE value changed dramatically between 0.354 and 1, and the PTE value approached 1. OE was mainly affected by SE changes. (2) Dynamic: The total factor productivity (TFP) was overall greater than 1 and grew at an average annual rate of 13.8%. The variation in TFP was primarily influenced by the index of technological progress, indicated that the tourism industry in Heilongjiang Province made full use of technology for resource development, with a relatively high level of development efficiency. Therefore, the future focus of Heilongjiang Province's tourism industry will be on adjustments in industrial scale, technological innovation, and policy optimization.

Federated learning-based client training acceleration method for personalized digital twins (개인화 디지털 트윈을 위한 연합학습 기반 클라이언트 훈련 가속 방식)

  • YoungHwan Jeong;Won-gi Choi;Hyoseon Kye;JeeHyeong Kim;Min-hwan Song;Sang-shin Lee
    • Journal of Internet Computing and Services
    • /
    • 제25권4호
    • /
    • pp.23-37
    • /
    • 2024
  • Digital twin is an M&S (Modeling and Simulation) technology designed to solve or optimize problems in the real world by replicating physical objects in the real world as virtual objects in the digital world and predicting phenomena that may occur in the future through simulation. Digital twins have been elaborately designed and utilized based on data collected to achieve specific purposes in large-scale environments such as cities and industrial facilities. In order to apply this digital twin technology to real life and expand it into user-customized service technology, practical but sensitive issues such as personal information protection and personalization of simulations must be resolved. To solve this problem, this paper proposes a federated learning-based accelerated client training method (FACTS) for personalized digital twins. The basic approach is to use a cluster-driven federated learning training procedure to protect personal information while simultaneously selecting a training model similar to the user and training it adaptively. As a result of experiments under various statistically heterogeneous conditions, FACTS was found to be superior to the existing FL method in terms of training speed and resource efficiency.

Smoking-attributable Mortality in Korea, 2020: A Meta-analysis of 4 Databases

  • Eunsil Cheon;Yeun Soo Yang;Suyoung Jo;Jieun Hwang;Keum Ji Jung;Sunmi Lee;Seong Yong Park;Kyoungin Na;Soyeon Kim;Sun Ha Jee;Sung-il Cho
    • Journal of Preventive Medicine and Public Health
    • /
    • 제57권4호
    • /
    • pp.327-338
    • /
    • 2024
  • Objectives: Estimating the number of deaths caused by smoking is crucial for developing and evaluating tobacco control and smoking cessation policies. This study aimed to determine smoking-attributable mortality (SAM) in Korea in 2020. Methods: Four large-scale cohorts from Korea were analyzed. A Cox proportional-hazards model was used to determine the hazard ratios (HRs) of smoking-related death. By conducting a meta-analysis of these HRs, the pooled HRs of smoking-related death for 41 diseases were estimated. Population-attributable fractions (PAFs) were calculated based on the smoking prevalence for 1995 in conjunction with the pooled HRs. Subsequently, SAM was derived using the PAF and the number of deaths recorded for each disease in 2020. Results: The pooled HR for all-cause mortality attributable to smoking was 1.73 for current men smokers (95% confidence interval [CI], 1.53 to 1.95) and 1.63 for current women smokers (95% CI, 1.37 to 1.94). Smoking accounted for 33.2% of all-cause deaths in men and 4.6% in women. Additionally, it was a factor in 71.8% of men lung cancer deaths and 11.9% of women lung cancer deaths. In 2020, smoking was responsible for 53 930 men deaths and 6283 women deaths, totaling 60 213 deaths. Conclusions: Cigarette smoking was responsible for a significant number of deaths in Korea in 2020. Monitoring the impact and societal burden of smoking is essential for effective tobacco control and harm prevention policies.

Predicting 30-day mortality in severely injured elderly patients with trauma in Korea using machine learning algorithms: a retrospective study

  • Jonghee Han;Su Young Yoon;Junepill Seok;Jin Young Lee;Jin Suk Lee;Jin Bong Ye;Younghoon Sul;Se Heon Kim;Hong Rye Kim
    • Journal of Trauma and Injury
    • /
    • 제37권3호
    • /
    • pp.201-208
    • /
    • 2024
  • Purpose: The number of elderly patients with trauma is increasing; therefore, precise models are necessary to estimate the mortality risk of elderly patients with trauma for informed clinical decision-making. This study aimed to develop machine learning based predictive models that predict 30-day mortality in severely injured elderly patients with trauma and to compare the predictive performance of various machine learning models. Methods: This study targeted patients aged ≥65 years with an Injury Severity Score of ≥15 who visited the regional trauma center at Chungbuk National University Hospital between 2016 and 2022. Four machine learning models-logistic regression, decision tree, random forest, and eXtreme Gradient Boosting (XGBoost)-were developed to predict 30-day mortality. The models' performance was compared using metrics such as area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, specificity, F1 score, as well as Shapley Additive Explanations (SHAP) values and learning curves. Results: The performance evaluation of the machine learning models for predicting mortality in severely injured elderly patients with trauma showed AUC values for logistic regression, decision tree, random forest, and XGBoost of 0.938, 0.863, 0.919, and 0.934, respectively. Among the four models, XGBoost demonstrated superior accuracy, precision, recall, specificity, and F1 score of 0.91, 0.72, 0.86, 0.92, and 0.78, respectively. Analysis of important features of XGBoost using SHAP revealed associations such as a high Glasgow Coma Scale negatively impacting mortality probability, while higher counts of transfused red blood cells were positively correlated with mortality probability. The learning curves indicated increased generalization and robustness as training examples increased. Conclusions: We showed that machine learning models, especially XGBoost, can be used to predict 30-day mortality in severely injured elderly patients with trauma. Prognostic tools utilizing these models are helpful for physicians to evaluate the risk of mortality in elderly patients with severe trauma.

Research on Dispersion Prediction Technology and Integrated Monitoring Systems for Hazardous Substances in Industrial Complexes Based on AIoT Utilizing Digital Twin (디지털트윈을 활용한 AIoT 기반 산업단지 유해물질 확산예측 및 통합관제체계 연구)

  • Min Ho Son;Il Ryong Kweon
    • Journal of the Society of Disaster Information
    • /
    • 제20권3호
    • /
    • pp.484-499
    • /
    • 2024
  • Purpose: Recently, due to the aging of safety facilities in national industrial complexes, there has been an increase in the frequency and scale of safety accidents, highlighting the need for a shift toward a prevention-centered disaster management paradigm and the establishment of a digital safety network. In response, this study aims to provide an information system that supports more rapid and precise decision-making during disasters by utilizing digital twin-based integrated control technology to predict the spread of hazardous substances, trace the origin of accidents, and offer safe evacuation routes. Method: We considered various simulation results, such as surface diffusion, upper-level diffusion, and combined diffusion, based on the actual characteristics of hazardous substances and weather conditions, addressing the limitations of previous studies. Additionally, we designed an integrated management system to minimize the limitations of spatiotemporal monitoring by utilizing an IoT sensor-based backtracking model to predict leakage points of hazardous substances in spatiotemporal blind spots. Results: We selected two pilot companies in the Gumi Industrial Complex and installed IoT sensors. Then, we operated a living lab by establishing an integrated management system that provides services such as prediction of hazardous substance dispersion, traceback, AI-based leakage prediction, and evacuation information guidance, all based on digital twin technology within the industrial complex. Conclusion: Taking into account the limitations of previous research, we used digital twin-based AI analysis to predict hazardous chemical leaks, detect leakage accidents, and forecast three-dimensional compound dispersion and traceback diffusion.

Development of a customized GPTs-based chatbot for pre-service teacher education and analysis of its educational performance in mathematics (GPTs 기반 예비 교사 교육 맞춤형 챗봇 개발 및 수학교육적 성능 분석)

  • Misun Kwon
    • The Mathematical Education
    • /
    • 제63권3호
    • /
    • pp.467-484
    • /
    • 2024
  • The rapid advancement of generative AI has ushered in an era where anyone can create and freely utilize personalized chatbots without the need for programming expertise. This study aimed to develop a customized chatbot based on OpenAI's GPTs for the purpose of pre-service teacher education and to analyze its educational performance in mathematics as assessed by educators guiding pre-service teachers. Responses to identical questions from a general-purpose chatbot (ChatGPT), a customized GPTs-based chatbot, and an elementary mathematics education expert were compared. The expert's responses received an average score of 4.52, while the customized GPTs-based chatbot received an average score of 3.73, indicating that the latter's performance did not reach the expert level. However, the customized GPTs-based chatbot's score, which was close to "adequate" on a 5-point scale, suggests its potential educational utility. On the other hand, the general-purpose chatbot, ChatGPT, received a lower average score of 2.86, with feedback indicating that its responses were not systematic and remained at a general level, making it less suitable for use in mathematics education. Despite the proven educational effectiveness of conventional customized chatbots, the time and cost associated with their development have been significant barriers. However, with the advent of GPTs services, anyone can now easily create chatbots tailored to both educators and learners, with responses that achieve a certain level of mathematics educational validity, thereby offering effective utilization across various aspects of mathematics education.