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Purpose: The number of elderly patients with trauma is increasing; therefore, precise models are 
necessary to estimate the mortality risk of elderly patients with trauma for informed clinical deci-
sion-making. This study aimed to develop machine learning based predictive models that predict 
30-day mortality in severely injured elderly patients with trauma and to compare the predictive per-
formance of various machine learning models. 
Methods: This study targeted patients aged ≥65 years with an Injury Severity Score of ≥15 who visit-
ed the regional trauma center at Chungbuk National University Hospital between 2016 and 2022. 
Four machine learning models—logistic regression, decision tree, random forest, and eXtreme Gra-
dient Boosting (XGBoost)—were developed to predict 30-day mortality. The models’ performance 
was compared using metrics such as area under the receiver operating characteristic curve (AUC), 
accuracy, precision, recall, specificity, F1 score, as well as Shapley Additive Explanations (SHAP) val-
ues and learning curves. 
Results: The performance evaluation of the machine learning models for predicting mortality in se-
verely injured elderly patients with trauma showed AUC values for logistic regression, decision tree, 
random forest, and XGBoost of 0.938, 0.863, 0.919, and 0.934, respectively. Among the four models, 
XGBoost demonstrated superior accuracy, precision, recall, specificity, and F1 score of 0.91, 0.72, 
0.86, 0.92, and 0.78, respectively. Analysis of important features of XGBoost using SHAP revealed 
associations such as a high Glasgow Coma Scale negatively impacting mortality probability, while 
higher counts of transfused red blood cells were positively correlated with mortality probability. The 
learning curves indicated increased generalization and robustness as training examples increased. 
Conclusions: We showed that machine learning models, especially XGBoost, can be used to predict 
30-day mortality in severely injured elderly patients with trauma.  
Prognostic tools utilizing these models are helpful for physicians to evaluate the risk of mortality in 
elderly patients with severe trauma. 
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INTRODUCTION 

Background 
Trauma has been viewed as a common cause of disability and 
death in patients [1,2]. Approximately 500,000 elderly patients 
are admitted to trauma centers after injury annually in the Unit-
ed States [3]. In Korea, there are as many as 200,000 severe trau-
ma patients annually, about 40% of whom aged ≥ 60 years. Re-
cently, the proportion of elderly patients with trauma has been 
steadily increasing [4]. The care and management of critically ill 
elderly patients with severe trauma poses unique challenges for 
healthcare professionals, necessitating innovative approaches to 
improve outcomes and enhance patient care [5]. 

Many trauma scoring systems and predictors have been devel-
oped, such as the Injury Severity Score (ISS), Revised Trauma 
Score, Trauma and Injury Severity Score, and Geriatric Trauma 
Outcome Score (GTOS) [3,6,7]. The above scores provide clini-
cal importance, but require the assumption of linear relationships 
between factors. However, in many cases, relationships exist be-
yond simple linear relationships, and multicollinearity problems 
often exist. 

Machine learning (ML) learns models from past data to pre-
dict future data [8]. ML models show better predictive power 
when multiple variables show complicated and nonlinear rela-
tionships [9–13]. ML methods can extract various important fac-
tors that influence the prognosis of patients [14]. Using such 
technology can help improve the speed and accuracy of medical 
decisions, particularly in critically ill patients where swift deci-
sion-making is vital [15]. Many ML models, such as support vec-
tor machines, decision trees, logistic regression, random forests, 
eXtreme Gradient Boosting (XGBoost), and others, have been 
developed in various medical fields. In several studies, ML mod-
els have demonstrated high predictive accuracy in critically ill 
trauma patients [16–18]. 

Objectives 
In this study, we developed a model to predict 30-day mortality 
in severely injured elderly patients with trauma, evaluated its per-
formance, and analyzed risk factors. 

METHODS 

Ethics statement 
This study was approved by the Institutional Review Board of 
Chungbuk National University Hospital (No. 2024-01-034-001). 
The requirement for informed consent was waived due to the 

retrospective nature of the study. 

Study population 
This retrospective study was conducted at a single level I trauma 
center at Chungbuk National University Hospital (Cheongju, Ko-
rea) between January 2016 and December 2022. Data from the 
medical records of patients admitted to this hospital and regis-
tered in the Korean Trauma Database were collected and ana-
lyzed.  

The inclusion criteria were patients aged ≥ 65 years, admitted 
to traumatic intensive care unit with ISS ≥ 15. Those who were 
hopelessly discharged, died at the time of arrival, did not survive 
after cardiopulmonary resuscitation, died after 30 days after inju-
ry, or died unrelated to trauma were excluded from the study. 

Study design 
The patients were divided into two groups: survivor and nonsur-
vivor groups. We compared baseline characteristics, vital signs, 
and mental status upon arrival at the emergency room, Abbrevi-
ated Injury Score (AIS), ISS, Glasgow Coma Scale (GCS), need 
for emergency surgery, transfusion of red blood cells (RBCs) 
within 24 hours, number of transfused RBCs, and type of acci-
dent. 

Finally, we selected 10 potential risk factors after the univariate 
analysis through least absolute shrinkage and selection operator 
(LASSO) regression [19]. We selected risk factors with nonzero 
LASSO coefficient as a feature (Fig. 1). The 10 risk factors were 
age, pulse rate, GCS score, respiratory rate, need for surgery, chest 
AIS, pelvis AIS, ISS, number of transfused RBCs, and type of ac-
cident. Potential risk factors were used as the same features to 
compare the models equally. 

ML modeling establishment 
The original dataset was divided into training (80%) and testing 
(20%). Four different ML models (logistic regression, decision 
tree, random forest, and XGBoost) were used to create and test 
the models for predicting mortality in elderly patients with severe 
trauma. Each model was trained on the training set and assessed 
using the test set. To obtain the best prediction model, the opti-
mal hyperparameters of the models were selected and tuned us-
ing a grid search method with a 10-fold cross-validation proce-
dure. The 10-fold cross-validation was used to evaluate the mod-
els by dividing the dataset into 10 subsamples, training and test-
ing the models 10 times, and providing a more reliable estimate 
of their generalization performance [11,16]. The best estimator 
model was evaluated using the test set. 
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Model performance and comparison 
The model was evaluated using a confusion matrix, the area un-
der the receiver operating characteristic curve (AUC), accuracy, 
precision, recall (sensitivity), specificity, and F1 score. Shapley 
Additive Explanations (SHAP) is a popular technique in the field 
of ML for explaining the output of a model. This provided a way 
to understand the contribution of each feature to the prediction 
of the model [20]. To demonstrate the importance of features, we 
use the SHAP method. We used a learning curve to represent of 
the model’s performance on a task as a function of the amount of 
training data or training iterations [21,22]. 

Statistical analysis 
Statistical analyses were performed using Python ver. 3.10.5 (Py-
thon Software Foundation) and R ver. 4.2.3 (R Foundation for 
Statistical Computing). For categorical variables, we used the chi-
square test or Fisher exact test to determine significance. For con-
tinuous variables, we used the t-test or Mann-Whitney U-test. A 
P-value of < 0.05 was considered statistically significant. ML 
models were constructed using Python and several Python mod-
ules (pandas, numpy, sklearn, xgboost, matplotlib, and shap). 

RESULTS 

Clinical characteristics of the study population 
A total of 555 patients were included in the study. Of the 555 
patients, 430 (77.5%) survived, and 125 (22.5%) died. The dif-
ferences in baseline characteristics between survivors and non-
survivors are shown in Table 1. The nonsurvivor group was sig-
nificantly older than the survivor group (79 years vs. 75 years, 
P =0.021). The GCS score was significantly lower in the non-
survivor group than in the survivor group (6 vs. 14, P <0.001). 
The nonsurvivor group had a greater proportion of patients 
with hypotension (20.8% vs. 11.4%, P =0.011), need for RBC 
transfusion (66.4% vs. 44.7%, P <0.001), and number of trans-
fused RBCs (5 units vs. 3 units, P <0.001) than the survivor 
group. ISS (26 vs. 22, P <0.001) and GTOS (162 vs. 141, 
P <0.001) were also higher in the nonsurvivor group than in 
the survivor group. The number of patients exhibiting higher 
head and chest AIS scores was significantly higher in the non-
survivor group (Table 2). 

Performance evaluation of the models 
The accuracy, precision, recall, specificity, F1 score, and AUC of 
the ML models for predicting mortality in severely injured elder-
ly patients with trauma were validated using the test dataset. In 
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Fig. 1. Feature selection using the least absolute shrinkage and selection operator (LASSO) method with coefficients. RBC, red blood cell; AIS, 
Abbreviated Injury Severity.
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the test-set analysis, the AUCs of the logistic regression, decision 
tree, random forest, and XGBoost models were 0.938, 0.863, 
0.919, and 0.934, respectively (Fig. 2). The AUC was slightly 
higher in the logistic regression than in XGBoost; however, XG-
Boost exhibited better results in terms of accuracy, precision, re-
call, specificity, and F1 score (0.91, 0.72, 0.86, 0.92, and 0.78, re-
spectively) (Table 3). 

To analyze the impact of important features on the model, a 
SHAP summary figure was used to show how features affected 
the probability of mortality. The colors and locations of the 
points indicate whether a certain feature has a higher or lower 
value than the other features. Using the XGBoost model as an 
example, a high GCS score is negatively associated with the 
probability of mortality, whereas a high number of transfused 
RBCs positively correlates with the probability of mortality. 
Lower GCS score, higher number of transfused RBCs, higher 
ISS, and old age positively impacted on 30-day mortality pre-
diction (Fig. 3). 

The learning curve of XGBoost showed that the training score 
decreased, and the validation score increased as the number of 
training examples increased (Fig. 4). With repeated training and 

validation sets, the difference between the training and validation 
sets decreased, indicating that the model became more general-
ized and robust. 

DISCUSSION 

Predicting a patient's prognosis with insufficient patient informa-
tion in an emergency plays a vital role in patient evaluation and 
the utilization of limited medical resources in trauma. However, 
owing to information and time limitations in emergencies, emer-
gency physicians and trauma surgeons are often unable to obtain 
all features for predicting mortality. Traditional trauma scoring 
systems, although clinically important, often assume linear rela-
tionships between explanatory variables. ML models, which use 
robust mathematical methodologies, exhibit better predictive ca-
pabilities, especially for handling complicated, nonlinear, and co-
variate factors. This provides an opportunity in the field of trau-
ma to improve predictive accuracy. 

This study focused on the application of ML models in pre-
dicting 30-day mortality in severely injured elderly patients with 
trauma, presenting an innovative approach for handling complex 

Table 1. Basic characteristics of the study population 

Characteristic Total (n=555) Survivor (n=430) Nonsurvivor (n=125) P-value
Age (yr) 75 (70–81) 75 (70–80) 79 (71–82) 0.021
Male sex 357 (64.3) 273 (63.5) 84 (67.2) 0.499
Injury mechanism 0.095
  Pedestrian TA 124 (22.3) 89 (20.7) 35 (28.0)
  Bicycle TA 35 (6.3) 24 (5.6) 11 (8.8)
  Motorcycle TA 85 (15.3) 63 (14.7) 22 (17.6)
  Car TA 75 (13.5) 67 (15.6) 8 (6.4)
  Slip down 84 (15.1) 63 (14.7) 21 (16.8)
  Fall from height 88 (15.9) 74 (17.2) 14 (11.2)
  Stuck by object 25 (4.5) 20 (4.7) 5 (4.0)
  Other 39 (7.0) 30 (6.9) 9 (7.2)
Pulse rate (beats/min) 85 (72–101) 84 (72–99) 92 (78–112) 0.004
Respiratory rate (breaths/min) 20 (20–24) 20 (20–24) 22 (18–24) 0.913
Systolic blood pressure (mmHg) 130 (102–158) 130 (104–154) 134 (100–170) 0.463
Glasgow Coma Scale 14 (8–15) 14 (11–15) 6 (3–10) <0.001
Hypotension 75 (13.5) 49 (11.4) 26 (20.8) 0.011
RBC transfusion 275 (49.5) 192 (44.7) 83 (66.4) <0.001
No. of transfused RBCs (U) 4 (2–6) 3 (2–5) 5 (4–11) <0.001
Injury Severity Score 25 (18–27) 22 (17–26) 26 (25–35) <0.001
Trauma and Injury Severity Score 0.881 (0.500–0.881) 0.881 (0.731–0.953) 0.500 (0.269–0.731) <0.001
Geriatric Trauma Outcome Score 144 (129–164) 141 (125–158) 162 (144–186) <0.001
Emergency operation 187 (33.7) 139 (32.3) 48 (38.4) 0.247
Values are presented as median (interquartile range) or number (%). Percentages may not total 100 due to rounding.
TA, traffic accident; RBC, red blood cell.
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Table 2. Comparison of AIS of patients who survived or not 

AIS
No. of patients (%)

P-valueTotal 
(n=555)

Survivor 
(n=430)

Nonsurvivor 
(n=125)

Head <0.001
  0 142 (25.6) 130 (30.2) 12 (9.6)
  1 0 0 0
  2 36 (6.5) 31 (7.2) 5 (4.0)
  3 89 (16.0) 76 (17.7) 13 (10.4)
  4 118 (21.3) 98 (22.8) 20 (16.0)
  5 170 (30.6) 95 (22.1) 75 (60.0)
  6 0 0 0
Chest 0.006
  0 258 (46.5) 186 (43.3) 72 (57.6)
  1 7 (1.3) 4 (0.9) 3 (2.4)
  2 32 (5.8) 25 (5.8) 7 (5.6)
  3 209 (37.7) 176 (40.9) 33 (26.4)
  4 41 (7.4) 35 (8.1) 6 (4.8)
  5 7 (1.3) 4 (0.9) 3 (2.4)
  6 1 (0.2) 0 1 (0.8)
Abdomen 0.297
  0 374 (67.4) 285 (66.3) 89 (71.2)
  1 0 0 0
  2 91 (16.4) 74 (17.2) 17 (13.6)
  3 62 (11.2) 52 (12.1) 10 (8.0)
  4 24 (4.3) 17 (4.0) 7 (5.6)
  5 4 (0.7) 2 (0.5) 2 (1.6)
  6 0 0 0
Pelvis 0.081
  0 308 (55.5) 231 (53.7) 77 (61.6)
  1 4 (0.7) 2 (0.5) 2 (1.6)
  2 121 (21.8) 97 (22.6) 24 (19.2)
  3 65 (11.7) 57 (13.3) 8 (6.4)
  4 38 (6.8) 31 (7.2) 7 (5.6)
  5 19 (3.4) 12 (2.8) 7 (5.6)
  6 0 0 0
Percentages may not total 100 due to rounding.
AIS, Abbreviated Injury Scale.
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multiple variables. Mortality prediction models for elderly trau-
ma patients with ISS ≥ 15 were established based on four ML al-
gorithms. 

AUC is a metric used to evaluate the performance of a ML 
model in binary classification tasks, such as predicting mortality. 
An AUC value over 0.9 is generally considered indicative of ex-
cellent discriminatory ability in a predictive model [23]. Three of 
the four models (logistic regression, random forest, and XG-
Boost) showed outstanding predictive performance in our test 
dataset. AUC is a valuable metric for assessing the overall perfor-
mance of a predictive model; however, it has some limitations. 

These limitations include a lack of interpretability of specific con-
tributors, inability to identify feature importance, and limited in-
sight into the prediction impact. Various metrics can be used to 
evaluate binary classification models. Using only a subset can 
provide a false impression of a model's actual performance, lead-
ing to unexpected results when applied in clinical settings. There-
fore, it is crucial to interpret the performance holistically by com-
bining multiple metrics [24]. Therefore, we used the accuracy, 
precision, recall, specificity, and F1 score with the AUC to evalu-
ate the models. The F1 score is a metric commonly used in bina-
ry classification problems, such as evaluating the performance of 
a ML model. The F1 score is the harmonic mean of precision and 
recall, and provide a balanced measure of a model's accuracy, 
particularly when dealing with imbalanced datasets [25,26]. 

In our study, XGBoost exhibited the best performance in terms 
of accuracy, precision, recall, specificity, and F1 score. The F1 
score of XGBoost was 0.78, the highest among the four models. 
An F1 score of 0.78 generally indicate a model is performing well, 
striking a balance between precision and recall. In the field of 
medicine, datasets often exhibit an imbalance, where certain 
classes or outcomes are underrepresented compared to others 
[27]. Gradient boosting, including algorithms such as XGBoost, 
can be strong for imbalanced datasets, even without explicitly 
oversampling the minority class. Gradient boosting inherently 
has mechanisms that make it suitable for handling imbalanced 
datasets [28]. 

We used the SHAP method to analyze the feature importance 
in the ML models. The SHAP method is crucial in ML for pro-
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Table 3. Model performances of the test dataset 

Prediction model Accuracy Precision Recall Specificity F1 score AUC
Logistic regression 0.86 0.58 0.86 0.86 0.69 0.938
Decision tree 0.83 0.53 0.81 0.83 0.64 0.863
Random forest 0.86 0.61 0.81 0.88 0.69 0.919
XGBoost 0.91 0.72 0.86 0.92 0.78 0.934
AUC, area under the receiver operating curve; XGBoost, eXtreme Gradient Boosting.
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Fig. 3. Shapley Additive Explanations (SHAP) value of the eXtreme Gradient Boosting (XGBoost) model output. RBC, red blood cell; AIS, Abbre-
viated Injury Severity.
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viding insightful explanations of model outputs by quantifying 
the contribution of each feature to predictions [29,30]. In this 
study, GCS was the most important feature, followed by the 

number of transfused RBCs within 24 hours, ISS, pulse rate, and 
age in the XGBoost model. 

Learning curves provide valuable insights into the perfor-
mance of ML models during training by visualizing how a mod-
el's performance changes with the amount of training data or it-
erations [22]. Our results demonstrated a tendency toward gen-
eralization as the number of iterations increased across all mod-
els. 

Limitations 
Our study has some limitations. First, it was a retrospective study. 
Our cohort was specific to elderly patients. Therefore, there may 
have been selection bias. Second, the sample size was relatively 
small, and there may be problems such as overfitting, requiring 
additional data and external validation. Lastly, the unbalanced 
nature of the dataset may affect model generalization and reli-
ability. 
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Conclusions 
This study demonstrated that ML models, particularly XGBoost, 
perform well in predicting 30-day mortality among severely in-
jured elderly trauma patients. ML models for mortality predic-
tion can aid in the early identification of mortality risk factors 
and facilitate early intervention, potentially reducing mortality 
rates. Further research with larger datasets and external valida-
tion is recommended to enhance the robustness and generaliz-
ability of these models. 
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