• Title/Summary/Keyword: scale reduction model

Search Result 404, Processing Time 0.026 seconds

Generation of a skeletal mechanism of coal combustion based on the chemical pathway analysis

  • Ahn, Seongyool;Watanabe, Hiroaki;Shoji, Tetsuya;Umemoto, Satoshi;Tnno, Kenji
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.5-7
    • /
    • 2014
  • A skeletal mechanism of coal combustion was derived from a detailed coal combustion kinetic mechanism through an importance analysis of chemical pathways. The reduction process consists of roughly two parts. The first process is performed based on a connectivity analysis between species. In this process, DRGEPSA is chosen for reduction process. Strongly connected species and related reactions from the important species set as start species by the operator are sorted into the reduced mechanism. About 70% of species and reactions can be removed with a limited accuracy loss. Subsequently the second reduction process, CSP, is performed. This method focuses on an importance of each reaction and can reduce a volume of mechanism appropriately. Through these analyses, a skeletal mechanism is generated that is including 65 species and 150 reactions. The generated skeletal mechanism is verified through a comparison with the detailed mechanism in the homogeneous reactor model of CHEMKIN-PRO under wide range of conditions. The generated mechanism can give an advantage in the analysis of coal combustion characteristics in detail in large scale simulations such as LES and DNS.

  • PDF

Investigating meso-scale low-temperature fracture mechanisms of recycled asphalt concrete (RAC) via peridynamics

  • Yuanjie Xiao;Ke Hou;Wenjun Hua;Zehan Shen;Yuliang Chen;Fanwei Meng;Zuen Zheng
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2024
  • The increase of reclaimed asphalt pavement (RAP) content in recycled asphalt concrete (RAC) is accompanied by the degradation of low-temperature cracking resistance, which has become an obstacle to the development of RAC. This paper aims to reveal the meso-scale mechanisms of the low-temperature fracture behavior of RAC and provide a theoretical basis for the economical recycling of RAP. For this purpose, micromechanical heterogeneous peridynamic model of RAC was established and validated by comparing three-point bending (TPB) test results against corresponding numerical simulation results of RAC with 50% RAP content. Furthermore, the models with different aggregate shapes (i.e., average aggregates circularity (${\bar{C_r}}=1.00$, 0.75, and 0.50) and RAP content (i.e., 0%, 15%, 30%, 50%, 75%, and 100%) were constructed to investigate the effect of aggregate shape and RAP content on the low-temperature cracking resistance. The results show that peridynamic models can accurately simulate the low-temperature fracture behavior of RAC, with only 2.9% and 13.9% differences from the TPB test in flexural strength and failure strain, respectively. On the meso-scale, the damage in the RAC is mainly controlled by horizontal tensile stress and the stress concentration appears in the interface transition zone (ITZ). Aggregate shape has a significant effect on the low-temperature fracture resistance, i.e., higher aggregate circularity leads to better low-temperature performance. The large number of microcracks generated during the damage evolution process for the peridynamic model with circular aggregates contributes to slowing down the fracture, whereas the severe stress concentration at the corners leads to the fracture of the aggregates with low circularity under lower stress levels. The effect of RAP content below 30% or above 50% is not significant, but a substantial reduction (16.9% in flexural strength and 16.4% in failure strain) is observed between the RAP content of 30% and 50%. This reduction is mainly attributed to the fact that the damage in the ITZ region transfers significantly to the aggregates, especially the RAP aggregates, when the RAP content ranges from 30% to 50%.

Climate Change Policy Analysis Considering Bottom-up Electricity Generation System (발전부문 하이브리드 모형을 사용한 기후변화 정책효과 분석)

  • Oh, Inha;Oh, Sang-Bong
    • Environmental and Resource Economics Review
    • /
    • v.22 no.4
    • /
    • pp.691-726
    • /
    • 2013
  • We develop a hybrid model which allows the change in electricity generation mix by adding the electricity-sector components of bottom-up model to the conventional CGE model. The electricity sector is represented as a sum of separate generation technologies, each of which has the form of DRTS (Decreasing Returns to Scale) production function, unlike the conventional CGE model. We compare the effects of the 30% emission reduction target using the hybrid model with those using the conventional CGE model. The cost of meeting the target is lower with the hybrid model than the conventional CGE. It is consistent with previous studies in that adding the bottom-up components to the top-down model reduces the cost of emission reduction. In an extra analysis we find that an additional regulation like RPS (Renewable Portfolio Standard) increases the cost.

An Empirical Analysis on Macro-economic Effects of the Proposed Reduction of Legal Working Hours in Korea (법정근로시간 단축의 거시경제 효과 분석)

  • Nam, Sung-il
    • Journal of Labour Economics
    • /
    • v.25 no.2
    • /
    • pp.33-78
    • /
    • 2002
  • This study analyzes effects of the proposed reduction of legal working hours in Korea in which base wage is unchanged with working hours reduction. The theoretical analysis shows that a reduction of legal working hours would result in less than equal size reduction of actual working hours, and increase in wages. On the other hand, the effects on employment is ambiguous depending on the substitution effect and scale effect. An empirical analysis based on macro-economic model simulation supports the theoretical conjecture. It has been found that with the reduction of legal working hours, real wages and consumption increase while actual working hours decreases about half of the legal hours reduction. In addition, the immediate and outright imposition of legal hours reduction on all sectors of the economy is found to create a cost push inflation and reduce GDP, investment, and employment. This negative effects are lessened as the reduction of legal hours is gradually made and/or some measures to absorb the cost shock such as abolition of paid monthly leave are employed together.

  • PDF

Improvement and application of SWMM-ING for carbon reduction in green infrastructure (그린인프라시설의 탄소저감을 위한 SWMM-ING 개선 및 적용성 평가)

  • Young Jun Lee;Chaeyoung Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.335-345
    • /
    • 2023
  • In Korea, as part of the Green New Deal project toward a carbon-neutral society, it is necessary to build a climate-resilient urban environment to green the city, space, and living infrastructure. To this end, SWMM-ING was improved and the model was modified to analyze the carbon reduction effect. In addition, I plan to select target watersheds where urbanization is rapidly progressing and evaluate runoff, non-point pollution, and carbon reduction effects to conduct cost estimation and optimal design review for domestic rainwater circulation green infrastructure. In this study, green infrastructure facilities were selected using SWMM-ING. Various scenarios were presented considering the surface area and annual cost of each green infrastructure facility, and The results show that the scenario derived through the APL2 method was selected as the optimal scenario. In this optimal scenario, a total facility area of 190,517.5 m2 was applied to 7 out of 30 subwatersheds to achieve the target reduction. The target reduction amount was calculated a 23.50 % reduction in runoff and a 26.99 % reduction in pollutant load. Additionally, the annual carbon absorption was analyzed and found to be 385,521 kg/year. I aim to achieve additional carbon reduction effects by achieving the goal of reducing runoff and non-point pollution sources and analyzing annual carbon absorption. Moreover, considering the scale-up of these interventions across the basin, it is believed that an objective assessment of economic viability can be conducted.

RESEARCH OF HIGH-SPEED TRAIN PANTOGRAPH SHAPE DESIGN FOR NOISE AND DRAG REDUCTION THROUGH COMPUTATIONAL ANALYSIS (전산해석을 통한 고속철도용 저소음 저저항 팬터그래프 형상설계 연구)

  • Jeong, S.M.;Lee, S.A.;Rho, J.H.;Kim, K.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.67-72
    • /
    • 2015
  • In this paper, study of high speed train pantograph arm shape and panhead cross-section for aerodynamic drag and noise reduction is performed. In previous research, it is known that knee of pantograph arm and panhead of pantogpraph are main sources of noise from high speed train pantograph. By numerical simulation using full scale pantograph model, pantograph arm and panhead optimization are performed. As a result, drag and noise are reduced at both studies about high speed pantograph.

A study on aggregation method using relation index of state variables in the power system (상태변수들의 관계지수를 이용한 전력시스템 축약기법 연구)

  • Lee, Byung-Ha;Oh, Min-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.339-341
    • /
    • 2006
  • Increasing interconnection of power plants in modern large electric power system has made power system dynamic studies much more complex. For effective analysis of the power system, model reduction and aggregation is required. In this paper, a new relation index is presented to identify the coherent generators in the large scale power system. In order to demonstrate the effects of this relation index, it is applied to a small scale power system of IEEE 39-bus test system and the simulation results are presented.

  • PDF

A study on application of aggregation method based on power flow matching technique and multi-variable control method to the power system (선로 조류 유지 기법에 근거한 계통축약 및 다변수 제어기법 적용 연구)

  • Lee, Byung-Ha;Oh, Min-Hyuk;Baek, Jung-Myoung
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.342-344
    • /
    • 2006
  • The modem enormous electric power system has made power system analysis much more complex and difficult. For effective analysis of the power system, model reduction and aggregation is required. In this paper, a new aggregation method is presented to aggregate the coherent generators in the large scale power system while matching the power flow. In order to demonstrate the effects of this aggregation method, it is applied to a small scale power system. A multi-variable control technique of $H_{\infty}$ control is also applied to enhance the dynamic stability of the aggregated power system.

  • PDF

Shaking Table Test of Small Scale RC Structure with Tuned Liquid Damper (동조액체 감쇠기를 설치한 철근콘크리트 축소모델의 진동대 실험)

  • Woo, Seang-Sik;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.113-116
    • /
    • 2005
  • In this study, in order to. investigate the effectiveness af tuned liquid damper (TLD) for the seismic performance enhancement af the existing reinforced concrete (RC) apartment structure which is nat seismically designed, shaking table test was conducted for the small scale five stary RC structure with TLD. TLD model was constructed to. have the frequency tuned to. the first modal frequency af the structure, $2\%$ mass ratio. af the first modal mass, and 0.08 liquid depth ratio. White noise with $0.2\~5Hz$ frequency bandwidth tests were performed using the shaking table at Korea Institute af Machinery and Materials, and the displacement and absolute acceleration af each floor were measured. Test results indicate that mare than $30\%$ seismic responses reduction can be achieved using TLD for RC structure under white noise.

  • PDF

Experimental analysis of a semi-actively controlled steel building

  • Occhiuzzi, Antonio;Spizzuoco, Mariacristina
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.721-747
    • /
    • 2005
  • The strong need of verifying theories formulated for semi-active control through applications to real structures is due to the fact that theoretical research on semi-active control systems is not matched by a corresponding satisfactory experimental activity. This paper shows how a smart system including magnetorheological devices as damping elements can be implemented in a large-scale structural model, by describing in detail the kind of electronics (dedicated hardware and software) adopted during the experimental campaign. It also describes the most interesting results in terms of reduction of the seismic response (either experimental or numerical) of the semi-actively controlled structure compared to a passive operating control system, and in terms of the evaluation criteria proposed in the benchmark for seismically excited controlled buildings. The paper also explains how to derive from the classical theory of optimal control the adopted control logic, based on a clear physical approach, and provides an exhaustive picture of the time delays characterizing the control sequence.