• Title/Summary/Keyword: scale parameter

Search Result 1,284, Processing Time 0.03 seconds

Segment-based land Cover Classification using Texture Information in Degraded Forest land of North Korea (북한 산림황폐지의 질감특성을 고려한 분할영상 기반 토지피복분류)

  • Kim, Eun-Sook;Lee, Seung-Ho;Cho, Hyun-Kook
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.477-487
    • /
    • 2010
  • In North Korea, forests were intensively degraded by forest land reclamation for food production and firewood collection since the mid-1970s. These degraded forests have to be certainly recovered for economic support, environmental protection and disaster prevention. In order to provide detailed land cover information of forest recovery project (A/R CDM), this study was focused to develop an improved classification method for degraded forest using 2.5m SPOT-5 pan-sharpened image. The degraded forest of North Korea shows various different types of texture. This study used GLCM texture bands of segmented image with spectral bands during forest cover classification. When scale factor 40/shape factor 0.3 was used as a parameter set to generate segment image, segment image was generated on suitable segment scale that could classify types of degraded forest. Forest land cover types were classified with an optimum band combination of Band1, Band2, band3, GLCM dissimilarity (band2), GLCM homogeneity (band2) and GLCM standard deviation (band3). Segment-based classification method using spectral bands and texture bands reached an 80.4% overall accuracy, but the method using only spectral bands yielded an 70.3% overall accuracy. As using spectral and texture bands, a classification accuracy of stocked forest and unstocked forest showed an increase of 23~25%. In this research, SPOT-5 pan-sharpened high-resolution satellite image could provide a very useful information for classifying the forest cover of North Korea in which field data collection was not available for ground truth data and verification directly. And segment-based classification method using texture information improved classification accuracy of degraded forest.

Modified Traditional Calibration Method of CRNP for Improving Soil Moisture Estimation (산악지형에서의 CRNP를 이용한 토양 수분 측정 개선을 위한 새로운 중성자 강도 교정 방법 검증 및 평가)

  • Cho, Seongkeun;Nguyen, Hoang Hai;Jeong, Jaehwan;Oh, Seungcheol;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.665-679
    • /
    • 2019
  • Mesoscale soil moisture measurement from the promising Cosmic-Ray Neutron Probe (CRNP) is expected to bridge the gap between large scale microwave remote sensing and point-based in-situ soil moisture observations. Traditional calibration based on $N_0$ method is used to convert neutron intensity measured at the CRNP to field scale soil moisture. However, the static calibration parameter $N_0$ used in traditional technique is insufficient to quantify long term soil moisture variation and easily influenced by different time-variant factors, contributing to the high uncertainties in CRNP soil moisture product. Consequently, in this study, we proposed a modified traditional calibration method, so-called Dynamic-$N_0$ method, which take into account the temporal variation of $N_0$ to improve the CRNP based soil moisture estimation. In particular, a nonlinear regression method has been developed to directly estimate the time series of $N_0$ data from the corrected neutron intensity. The $N_0$ time series were then reapplied to generate the soil moisture. We evaluated the performance of Dynamic-$N_0$ method for soil moisture estimation compared with the traditional one by using a weighted in-situ soil moisture product. The results indicated that Dynamic-$N_0$ method outperformed the traditional calibration technique, where correlation coefficient increased from 0.70 to 0.72 and RMSE and bias reduced from 0.036 to 0.026 and -0.006 to $-0.001m^3m^{-3}$. Superior performance of the Dynamic-$N_0$ calibration method revealed that the temporal variability of $N_0$ was caused by hydrogen pools surrounding the CRNP. Although several uncertainty sources contributed to the variation of $N_0$ were not fully identified, this proposed calibration method gave a new insight to improve field scale soil moisture estimation from the CRNP.

Quantitative Analysis of Feldspar Mixture Samples Using the Rietveld Refinement Method (Rietveld Refinement 방법을 응용한 장석 혼합시료의 정량분석 연구)

  • Shim, Sang-Heon;Ahn, Jung-Ho;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.62-79
    • /
    • 1994
  • The quanttative and structural analysis of the binary standard mixtures of albite and quartz, and microcline and albite were carried out using the Rietveld refinement method in order to investigate the accuracy and precision of the method. The quantitative analysis using the Rietveld method results in a standard deviation of 4 wt % for the albite-quartz standard mixtures and 1 wt % for the microcline-albite standard mixtures, suggesting that its accuracy is far better than that of the conventional XRD method in which only a few selected peaks are utilized. Furthermore, the unit-cell parameters of component minerals in mixtures were also estimated accurately during the analysis. It was observed that the refined weight fractions deviate systematically from their measured values when the method is applied to the mixtures that contain minerals with different degrees of preferred orientation, such as albite-quartz mixtures. The preferred orientation parameters and R-values suggest that the systematic deviation is caused as a result of the preferred orientation effect of feldspar crystallites. It is evident that the preferred orientation corrections are of help for the accurate determination of unit-cell parameters, although they may not improve the result of quantitative analysis significantly. The refined weight fraction of the mineral with higher degree of preferred orientation in mixture is greater than the measured one. This is apparently caused by the effect of geometry of feldspar crystallites in the surface of the mounted sample. The Rietveld refinement method minimizes the problems inherent in the traditional XRD methods, such as the line overlap, primary extinction, and preferred orientation effect, by fitting every data point in a whole pattern explicitly. Furthermore, accurate unit-cell parameters as well as scale factors that can be obtained from the Rietveld refinement are used for the quqantification. The present stdudy demonstrates that the Rietveld method yields far more accurate analytical result than the conventional XRD quantitative analysis method does.

  • PDF

The Weather Representativeness in Korea Established by the Information Theory (정보이론에 의한 한국의 일기대표성 설정)

  • Park, Hyun-Wook
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.2
    • /
    • pp.49-73
    • /
    • 1996
  • This study produces quantitatively weather entropy and information ratio using information theory about frequency in the appearance of precipitation phenomenon and monthly change, and then applies them to observation of the change of their space scale by time. As a result of these, this study defines Pusan, Chongju and Kwangju's weather representativeness and then establishes the range of weather representativeness. Based on weather entropy (statistical parameter)-the amount of average weather information-and information ratio, we can define each area's weather representativeness, which can show us more constant form included topographical, geographical factors and season change. The data used for this study are the daily precipitotion and cloudiness during the recent five years($1990{\sim}1994$) at the 69 stations in Korea. It is divided into class of no precipitation, that of precipitation. The results of this study can be summarized as follows: (1) The four season's mean value of information ratio is the highest value. as 0.641, on the basis of Chongju. It is the lowest as 0.572, on the basis of Pusan. On a seasonal basis, the highest mean value of information rate is April's (spring) in Chongju, and the lowest is October's(fall) in Pusan. Accordingly weather representativeness has the highest in Chongju and the lowest in Pusan. (2) To synthesize information ratio of decaying tendancy and half-decay distance, Chonju's weather representativeness has the highest in April, July and October. And kwangju has the highest value in January and the lowest in April and July. Pusan's weather representativeness is not high, that of Pusan's October is the lowest in the year. (3) If we establish the weather representative character on the basis of Chongju-Pusan, the domain of Chongju area is larger than that of Pusan area in October, July and April in order. But Pusan's is larger than Chongju's in January. In the case of Chongju and Kwangju, the domain of Chongju area is larger than that of Kwangju in October, July and April in order, but it is less than that of Kwangju area in January. In the case of Kwangju-Pusan, the domain of Kwangju is larger than that of Pusan in October, July in order. But in April it is less than Pusan's.

  • PDF

Design and Implementation of an Execution-Provenance Based Simulation Data Management Framework for Computational Science Engineering Simulation Platform (계산과학공학 플랫폼을 위한 실행-이력 기반의 시뮬레이션 데이터 관리 프레임워크 설계 및 구현)

  • Ma, Jin;Lee, Sik;Cho, Kum-won;Suh, Young-kyoon
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 2018
  • For the past few years, KISTI has been servicing an online simulation execution platform, called EDISON, allowing users to conduct simulations on various scientific applications supplied by diverse computational science and engineering disciplines. Typically, these simulations accompany large-scale computation and accordingly produce a huge volume of output data. One critical issue arising when conducting those simulations on an online platform stems from the fact that a number of users simultaneously submit to the platform their simulation requests (or jobs) with the same (or almost unchanging) input parameters or files, resulting in charging a significant burden on the platform. In other words, the same computing jobs lead to duplicate consumption computing and storage resources at an undesirably fast pace. To overcome excessive resource usage by such identical simulation requests, in this paper we introduce a novel framework, called IceSheet, to efficiently manage simulation data based on execution metadata, that is, provenance. The IceSheet framework captures and stores each provenance associated with a conducted simulation. The collected provenance records are utilized for not only inspecting duplicate simulation requests but also performing search on existing simulation results via an open-source search engine, ElasticSearch. In particular, this paper elaborates on the core components in the IceSheet framework to support the search and reuse on the stored simulation results. We implemented as prototype the proposed framework using the engine in conjunction with the online simulation execution platform. Our evaluation of the framework was performed on the real simulation execution-provenance records collected on the platform. Once the prototyped IceSheet framework fully functions with the platform, users can quickly search for past parameter values entered into desired simulation software and receive existing results on the same input parameter values on the software if any. Therefore, we expect that the proposed framework contributes to eliminating duplicate resource consumption and significantly reducing execution time on the same requests as previously-executed simulations.

Estimation of Precipitable Water from the GMS-5 Split Window Data (GMS-5 Split Window 자료를 이용한 가강수량 산출)

  • 손승희;정효상;김금란;이정환
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.53-68
    • /
    • 1998
  • Observation of hydrometeors' behavior in the atmosphere is important to understand weather and climate. By conventional observations, we can get the distribution of water vapor at limited number of points on the earth. In this study, the precipitable water has been estimated from the split window channel data on GMS-5 based upon the technique developed by Chesters et al.(1983). To retrieve the precipitable water, water vapor absorption parameter depending on filter function of sensor has been derived using the regression analysis between the split window channel data and the radiosonde data observed at Osan, Pohang, Kwangiu and Cheju staions for 4 months. The air temperature of 700 hPa from the Global Spectral Model of Korea Meteorological Administration (GSM/KMA) has been used as mean air temperature for single layer radiation model. The retrieved precipitable water for the period from August 1996 through December 1996 are compared to radiosonde data. It is shown that the root mean square differences between radiosonde observations and the GMS-5 retrievals range from 0.65 g/$cm^2$ to 1.09 g/$cm^2$ with correlation coefficient of 0.46 on hourly basis. The monthly distribution of precipitable water from GMS-5 shows almost good representation in large scale. Precipitable water is produced 4 times a day at Korea Meteorological Administration in the form of grid point data with 0.5 degree lat./lon. resolution. The data can be used in the objective analysis for numerical weather prediction and to increase the accuracy of humidity analysis especially under clear sky condition. And also, the data is a useful complement to existing data set for climatological research. But it is necessary to get higher correlation between radiosonde observations and the GMS-5 retrievals for operational applications.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Optimal Condition of Operation Parameter for Livestock Carcass Leachate using Fenton Oxidation Process (가축 사체 매몰지 침출수 처리를 위한 Fenton 산화공정의 최적조건)

  • An, Sang-Woo;Jeong, Young-Cheol;Yoo, Ji-Young;Min, Jee-Eun;Lee, Si-Jin;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.26-35
    • /
    • 2013
  • Outbreak of animal infectious diseases such as foot-and-mouth disease, avian influenza are becoming prevalent worldwide. For prevent the further infection, tremendous numbers of the infected or culled stocks are buried around farm. This burial method can generate a wide range of detrimental components such as leachate, nutrient, salt, and pathogenic bacteria, consequently. In this study, for the stabilization of livestock carcasses leachate, advanced oxidation processes utilizing the Fenton reaction was investigated in lab-scale experiments for the treatment for $COD_{Cr}$ of livestock carcass leachate. $COD_{Cr}$ reduction by the Fenton oxidation was investigated response surface methodology using the Box-Begnken methods were applied to the experimental results. A central composite design was used to investigate the effects of the independent variables of pH ($x_1$), dosage of $FeCl_2{\cdot}4H_2O$ ($x_2$) and dosage of $H_2O_2$ ($x_3$) on the dependent variables $COD_{Cr}$ concentration ($y_1$). A 1 M NaOH and $H_2SO_4$ was using for pH control, $FeCl_2{\cdot}4H_2O$ was used as iron catalyst and NaOH was used for Fenton reaction. The optimal conditions for Fenton oxidation process were determined: pH, dosage of $FeCl_2{\cdot}4H_2O$ and dosage of $H_2O_2$ were 3, 0.6 g (0.0151 M) and 7 mL(0.259 M), respectively. Statistical results showed the order of significance of the independent variables to be pH > initial concentration of ferrous ion > initial concentration of hydrogen peroxide.

Study on Combined Use of Inclination and Acceleration for Displacement Estimation of a Wind Turbine Structure (경사 및 가속도 계측자료 융합을 통한 풍력 터빈의 변위 추정)

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Byung-Jin;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Wind power systems have gained much attention due to the relatively high reliability, good infrastructures and cost competitiveness to the fossil fuels. Advances have been made to increase the power efficiency of wind turbines while less attention has been focused on structural integrity assessment of structural sub-systems such as towers and foundations. Among many parameters for integrity assessment, the most perceptive parameter may be the induced horizontal displacement at the hub height although it is very difficult to measure particularly in large-scale and high-rise wind turbine structures. This study proposes an indirect displacement estimation scheme based on the combined use of inclinometers and accelerometers for more convenient and cost-effective measurements. To this end, (1) the formulation for data fusion of inclination and acceleration responses was presented and (2) the proposed method was numerically validated on an NREL 5 MW wind turbine model. The numerical analysis was carried out to investigate the performance of the propose method according to the number of sensors, the resolution and the available sampling rate of the inclinometers to be used.

Assessment and Improvement of Documentation Status on the Statements for the Sea Area Utilization Consultation according to the Project of Ports and Fishery Harbors (항만·어항개발사업의 해역이용협의서 작성실태 평가 및 개선방안)

  • Tac, Dae-Ho;Oh, Hyun-Taik;Kim, Gui-Young;Lee, Dae-In
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.361-371
    • /
    • 2015
  • This study analyzed the 91 cases of the statements for the Sea Area Utilization Consultation according to the developmental projects of ports and fishery harbors for 2012 2014 and the status of the record of document, and suggested the improvement way to go. The marine environmental timpact assessment items both marine chemistry such as water quality, sediment and marine biology such as benthic animal, plankton, and fisheries show highly rate of site survey. But, the utilization of those data through site survey is too low, and it is necessary to adopt the QA/QC for the reliability of survey data. The items of marine physics such as tide, tidal current analyzed based on references not a site survey. However, the simulation performed actively without calibration and verification compared to the result of site survey. When the projects of port and fishery harbor perform, it is necessary to monitor the physical parameter such as wave, tide and tidal current especially. Based on the scale and the type of project, we need introduce the system of scoping for prediagnosis the key assessment items and checklists.