• Title/Summary/Keyword: scale models

Search Result 2,157, Processing Time 0.028 seconds

A review and comparison of convolution neural network models under a unified framework

  • Park, Jimin;Jung, Yoonsuh
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.161-176
    • /
    • 2022
  • There has been active research in image classification using deep learning convolutional neural network (CNN) models. ImageNet large-scale visual recognition challenge (ILSVRC) (2010-2017) was one of the most important competitions that boosted the development of efficient deep learning algorithms. This paper introduces and compares six monumental models that achieved high prediction accuracy in ILSVRC. First, we provide a review of the models to illustrate their unique structure and characteristics of the models. We then compare those models under a unified framework. For this reason, additional devices that are not crucial to the structure are excluded. Four popular data sets with different characteristics are then considered to measure the prediction accuracy. By investigating the characteristics of the data sets and the models being compared, we provide some insight into the architectural features of the models.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험)

  • Kim, Nam-Sik;Lee, Ji-Ho;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.35-43
    • /
    • 2004
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. In this study, compressive strength tests are conducted to analyze the equivalent modulus ratio of micro-concrete to normal-concrete. Then, equivalent modulus ratios are divided into multi-phase damage levels, which are basically dependent on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent multi-phase similitude law based on seismic damage levels, is developed. Test specimens, consisted of prototype structures and 1/5 scaled models as a reinforced concrete column, were designed and fabricated based on the equivalent modulus ratios already defined. Finally quasistatic and pseudodynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. It is confirmed that the equivalent multi-phase similitude law proposed in this study could be suitable for seismic performance tests on small-scale models.

Similitude Law An Equivalent Three Phase Similitude Law for Pseudodynamic Test on Small-scale Reinforced Concrete Structures (철근콘크리트 구조물의 유사동적실험을 위한 Equivalent Three Phase Similitude LaW)

  • ;;;Guo, Xun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.303-310
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into elastic, weak nonlinear and strong nonlinear phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent three phase similitude law based on seismic damage levels, is developed. In addition, prior to tile experiment, it is verified numerically if tile algorithm is applicable to the pseudodynamic test.

  • PDF

Development and validation of a non-linear k-ε model for flow over a full-scale building

  • Wright, N.G.;Easom, G.J.;Hoxey, R.J.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.177-196
    • /
    • 2001
  • At present the most popular turbulence models used for engineering solutions to flow problems are the $k-{\varepsilon}$ and Reynolds stress models. The shortcoming of these models based on the isotropic eddy viscosity concept and Reynolds averaging in flow fields of the type found in the field of Wind Engineering are well documented. In view of these shortcomings this paper presents the implementation of a non-linear model and its evaluation for flow around a building. Tests were undertaken using the classical bluff body shape, a surface mounted cube, with orientations both normal and skewed at $45^{\circ}$ to the incident wind. Full-scale investigations have been undertaken at the Silsoe Research Institute with a 6 m surface mounted cube and a fetch of roughness height equal to 0.01 m. All tests were originally undertaken for a number of turbulence models including the standard, RNG and MMK $k-{\varepsilon}$ models and the differential stress model. The sensitivity of the CFD results to a number of solver parameters was tested. The accuracy of the turbulence model used was deduced by comparison to the full-scale predicted roof and wake recirculation zone lengths. Mean values of the predicted pressure coefficients were used to further validate the turbulence models. Preliminary comparisons have also been made with available published experimental and large eddy simulation data. Initial investigations suggested that a suitable turbulence model should be able to model the anisotropy of turbulent flow such as the Reynolds stress model whilst maintaining the ease of use and computational stability of the two equations models. Therefore development work concentrated on non-linear quadratic and cubic expansions of the Boussinesq eddy viscosity assumption. Comparisons of these with models based on an isotropic assumption are presented along with comparisons with measured data.

Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Lazemi, Hossein Ali
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.505-516
    • /
    • 2018
  • In this paper, the effects of particle size and model scale of concrete has been investigated on the failure mechanism of PFC2D numerical models under uniaxial compressive test. For this purpose, rectangular models with same particle sizes and different model dimensions, i.e., $3mm{\times}6mm$, $6mm{\times}12mm$, $12mm{\times}24mm$, $25mm{\times}50mm$ and $54mm{\times}108mm$, were prepared. Also rectangular models with dimension of $54mm{\times}108mm$ and different particle sizes, i.e., 0.27 mm, 0.47 mm, 0.67 mm, 0.87 mm, 1.07 mm, 1.87 mm and 2.27 mm were simulated using PFC2D and tested under uniaxial compressive test. Concurrent with uniaxial test, direct shear test was performed on the numerical models. Dimension of the models were $75{\times}100mm$. Two narrow bands of particles with dimension of $37.5mm{\times}20mm$ were removed from upper and lower of the model to supply the shear test condition. The particle sizes in the models were 0.47 mm, 0.57 mm, 0.67 mm and 0.77 mm. The result shows that failure pattern was affected by model scale and particle size. The uniaxial compressive strength and shear strength were increased by increasing the model scale and particle size.

Reynolds number and scale effects on aerodynamic properties of streamlined bridge decks

  • Ma, Tingting;Feng, Chaotian
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.355-369
    • /
    • 2022
  • Section model test, as the most commonly used method to evaluate the aerostatic and aeroelastic performances of long-span bridges, may be carried out under different conditions of incoming wind speed, geometric scale and wind tunnel facilities, which may lead to potential Reynolds number (Re) effect, model scaling effect and wind tunnel scale effect, respectively. The Re effect and scale effect on aerostatic force coefficients and aeroelastic characteristics of streamlined bridge decks were investigated via 1:100 and 1:60 scale section model tests. The influence of auxiliary facilities was further investigated by comparative tests between a bare deck section and the deck section with auxiliary facilities. The force measurement results over a Re region from about 1×105 to 4×105 indicate that the drag coefficients of both deck sections show obvious Re effect, while the pitching moment coefficients have weak Re dependence. The lift coefficients of the smaller scale models have more significant Re effect. Comparative tests of different scale models under the same Re number indicate that the static force coefficients have obvious scale effect, which is even more prominent than the Re effect. Additionally, the scale effect induced by lower model length to wind tunnel height ratio may produce static force coefficients with smaller absolute values, which may be less conservative for structural design. The results with respect to flutter stability indicate that the aerodynamic-damping-related flutter derivatives 𝘈*2 and 𝐴*1𝐻*3 have opposite scale effect, which makes the overall scale effect on critical flutter wind speed greatly weakened. The most significant scale effect on critical flutter wind speed occurs at +3° wind angle of attack, which makes the small-scale section models give conservative predictions.

An Analysis of Sixth Graders' Understanding on Double Scale Model: Focusing on Fraction Division (이중 척도 모델에 대한 초등학교 6학년 학생들의 이해 분석: 분수의 나눗셈을 중심으로)

  • Pang, JeongSuk;Kwak, Giwoo;Kim, SoHyeon
    • Communications of Mathematical Education
    • /
    • v.37 no.2
    • /
    • pp.135-157
    • /
    • 2023
  • Double scale models have been introduced in elementary mathematics textbooks under the 2015 revised mathematics curriculum. However, few studies have examined in detail how students understand or utilize such models. In this study, we analyzed how 154 sixth-grade students who had learned the division of fractions from textbooks containing double scale models understood such models. The results showed that the students tended to identify the components of the model relatively well, but had difficulties exploring the unit or the meaning of the bottom number line of a model. They also had a lot of difficulties using the double scale model to complete the computation process and explain the computation principle. Based on these findings, we discuss the implications of teaching double scale models.

A Study on Presentation Methods for Formation Ideas of Interior Spaces (실내 공간 형상화를 위한 아이디어 표현 방법에 관한 연구)

  • Lee, Jong-Ran
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.6 no.2
    • /
    • pp.17-23
    • /
    • 2006
  • The purpose of this study was to investigate how student felt the strengths and shortness of presentation methods for formation of interior spaces. For this study, the process of the interior architecture design class was divided into three stages: the programming. the design development, and the design completion. In the design development stage, students used presentation methods: hand sketch, scale model, computer modeling, and virtual realty. The strengths of hand sketch was that quick expression. Models provided three-dimensional feelings. Computer modelling provide realistic color and texture. Virtual reality provided three-dimensional immersion and real scale. It is effective that students collect brain storm images using quick hand sketch in the beginning of design development stage. After that, they compose interior spaces in study models with small scale. Watching the models, they design details of spaces by using hand sketch and computer modelling. Using virtual reality, they can check the scale and circulation. Finally, they complete computer modelling by texture mapping and check the final design in virtual reality.

  • PDF

A Study on the Generation and Application of Photometric Data for Lighting Simulation (조명 시뮬레이션을 위한 측광데이터의 생성과 적용)

  • Hong, Sung-De
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.6 no.2
    • /
    • pp.25-30
    • /
    • 2006
  • The purpose of this study was to investigate how student felt the strengths and shortness of presentation methods for formation of interior spaces. For this study, the process of the interior architecture design class was divided into three stages: the programming. the design development, and the design completion. In the design development stage, students used presentation methods: hand sketch, scale model, computer modeling, and virtual realty. The strengths of hand sketch was that quick expression. Models provided three-dimensional feelings. Computer modelling provide realistic color and texture. Virtual reality provided three-dimensional immersion and real scale. It is effective that students collect brain storm images using quick hand sketch in the beginning of design development stage. After that, they compose interior spaces in study models with small scale. Watching the models, they design details of spaces by using hand sketch and computer modelling. Using virtual reality, they can check the scale and circulation. Finally, they complete computer modelling by texture mapping and check the final design in virtual reality.

  • PDF

Large-Scale Integrated Network System Simulation with DEVS-Suite

  • Zengin, Ahmet
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.452-474
    • /
    • 2010
  • Formidable growth of Internet technologies has revealed challenging issues about its scale and performance evaluation. Modeling and simulation play a central role in the evaluation of the behavior and performance of the large-scale network systems. Large numbers of nodes affect simulation performance, simulation execution time and scalability in a weighty manner. Most of the existing simulators have numerous problems such as size, lack of system theoretic approach and complexity of modeled network. In this work, a scalable discrete-event modeling approach is described for studying networks' scalability and performance traits. Key fundamental attributes of Internet and its protocols are incorporated into a set of simulation models developed using the Discrete Event System Specification (DEVS) approach. Large-scale network models are simulated and evaluated to show the benefits of the developed network models and approaches.