• Title/Summary/Keyword: scale down

Search Result 840, Processing Time 0.04 seconds

A Solution for Diffusion Equations and the Distribution of Alloying Elements in Sintered Alloys

  • Wang, Chonglin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.72-73
    • /
    • 2006
  • The error function can be calculated based on the Simpson method through a subroutine program. An integration program by FORTRAN language was made for diffusion equations of extended source with infinite extent and limited extent. The results on some alloying elements such as C, Co, Cr, Mn, Mo, Ni and V's diffusion in iron, showed the diffusion distance for Ni and Mo can only be $1{\sim}3\;{\mu}m$ and more distance for Co at common sintering temperature of $1120^{\circ}C$. To refine the particle size of the added elements down to a scale of micrometers is an effective way to get homogeneous distribution.

  • PDF

Analysis on the Characteristics of the Precedents for Industrial/Technological Cultural Properties of the Hansa Coking Plant (독일 산업·기술문화재 한자 코크스 제조소 재생사례 분석)

  • Kim, Hong-Gi;Park, Chang-Ho
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.1
    • /
    • pp.59-68
    • /
    • 2016
  • The Industrial/Technological Cultural Properties are being protected, the rest facing with demolition and damages. In order to better cope with such situation, Korea has officially introduced the Registered Cultural Properties System since 2001 and began acknowledging the historical values of industrial buildings as modern cultural properties. In the Nordrhein-Westfalen, Germany, there are approximately 3,500 industrial buildings under the cultural asset protection and management not only in the Ruhr-region but also state-wide. Among these, this case study focuses on the Hansa Coking Plant, a large-scale Revitalization project to rehabilitate the old industrial complexes and facility buildings that have been shut down on December 15, 1992. Purpose of this study is to analyze main project plans of each facility in the Hansa Coking Plant and to bring out the main features of the plans, so that they can be utilized to find suggestions for Industrial/Technological Cultural Properties Revitalization in Korea.

The viewing angle switching of TN-LCD with two tilted LC layer (기울어진 두 액정 층을 이용한 비틀린 네마틱 액정 셀의 시야각 조절)

  • Choi, Min-Oh;Lim, Young-Jin;Jeong, Eun;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.45-46
    • /
    • 2006
  • We have studied the viewing angle control using a twist nematic liquid crystal display (TN-LCDs). These TK-LCDs have the characteristics, of which is not good image quality, for examples low Contrast ratio and gray scale inversion problems at upper and down viewing direction. TN-LCDs have the function of switching between the wide viewing mode and narrow viewing angle mode using two tilted LC layers. Tilt angles of the two LC layers, $14^{\circ}$ and $60^{\circ}$ were required in both wide viewing angle and narrow viewing angle modes, respectively. Consequently, this device is compatible with two image performances of which the wide viewing angle mode and Narrow viewing angle mode.

  • PDF

Trend of Carbon Nano Tube and Application

  • Ryu, Kyung-Han;Soh, Dea-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.211-212
    • /
    • 2005
  • Semiconductor fabrication technique has been increasingly developed virtue of greater demands, and supplies and applied semiconductor components in respective processes under development for minuteness. Now semiconductor having a line-width of 75nm was commercialized, and it is possible to scale down to 25nm. Accordingly, to cover with limitations, alternatives are actively investigated. In this paper, we overview the trend and applications of carbon nano tube (CNT) and present the future and technology based on existed theories.

  • PDF

Mechanical Machining of Prism pattern (프리즘 패턴의 기계적 절삭 가공)

  • Yoo Y. E.;Hong S. M.;Je T. J.;Choi D. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.110-113
    • /
    • 2005
  • In recent, various shapes of pattern in micron or nano scale are adapted in many applications due to their good mechanical or optical properties. Light guide panel (LGP) of the LCD is one of important applications for micro pattern and micro prism shape is one of the typical patterns. Many applications have the patterns on their surface and the size of the pattern keep decreasing down to the order of micron or even under micron. On the other hand, the area to be patterned keeps enlarging. These two trends in patterned products require tooling micro patterns on large surface, which has still many technical problems to be solved mainly due to pattern size and the tooling area. In this study, we fabricate prism shape of patterns using diamond cutting tool on some metal core and plastic core like PMMA Some of cutting conditions are investigated including cutting force, cutting depth and speed for different core materials.

  • PDF

A study on VLSI circuit design using PLA (PLA를 이용한 VLSI의 회로설계에 관한 연구)

  • Song Hong-Bok
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.3
    • /
    • pp.205-215
    • /
    • 2006
  • In this paper, a method how to make Programmable Logic Array (PLA) design and inspection of circuit relative to recent 64bit microprocessor simple and easy was discussed. A design method using Random Access Memory (RAM), Read Only Memory (ROM) and PLA has been settled down in Very Large Scale Integrated Circuit (VLSI) and logical design, modifying circuit and inspection are easy in PLA so it holds fairly good advantages in the aspect of performance and cost. It is expected PLA will also occupy an important position as a basic factor in designing VLSI in the future.

  • PDF

Microstructural behavior and mechanics of nano-modified cementitious materials

  • Archontas, Nikolaos D.;Pantazopoulou, S.J.
    • Advances in concrete construction
    • /
    • v.3 no.1
    • /
    • pp.15-37
    • /
    • 2015
  • Ongoing efforts for improved fracture toughness of engineered cementitious materials address the inherent brittleness of the binding matrix at several different levels of the material's geometric scale through the addition of various types of reinforcing fibers. Crack control is required for crack widths that cover the entire range of the grain size spectrum of the material, and this dictates the requirement of hybrid mixes combining fibers of different size (nano, micro, macro). Use of Carbon Nano-Tubes (CNT) and Carbon Nano-Fibers (CNFs) as additives is meant to extend the crack-control function down to the nanoscale where cracking is believed to initiate. In this paper the implications of enhanced toughness thus attained at the material nanostructure are explored, with reference to the global smeared constitutive properties of the material, through consistent interpretation of the reported experimental evidence regarding the behavior of engineered cementitious products to direct and indirect tension.

Trends in Terahertz Semiconductor based on Electron Devices (전자소자 기반 테라헤르츠 반도체 기술 동향)

  • Kang, D.W.;Koo, B.T.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.34-40
    • /
    • 2018
  • Traditionally, many researchers have conducted research on terahertz technology utilizing optical devices such as lasers. However, nanometer-scale electronic devices using silicon or III-V compound semiconductors have received significant attention regarding the development of a terahertz system owing to the rapid scaling down of devices. This enables an operating frequency of up to approximately 0.5 THz for silicon, and approximately 1 THz for III-V devices. This article reviews the recent trends of terahertz monolithic integrated circuits based on several electronic devices such as CMOS, SiGe BiCMOS, and InP HBT/HEMT, and a particular quantum device, an RTD.

Numerical Simulation of Die Characteristics for Different Dies in Film Casting Extrusion Processes

  • Kim, Ju Hyun;Kim, See Jo
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.329-338
    • /
    • 2020
  • In this study, three different die geometries were selected to understand the die characteristics in the film casting extrusion processes. First, large and small-scale T-dies were numerically simulated to observe the scaled-down effect on the flow inside the dies. Second, three different dies-keyhole, linear tapper coat-hanger die (LTCD), and curved tapper coat-hanger die (CTCD)-were numerically observed and discussed according to the mass flow rate. Finally, the die exit velocity profiles and die characteristics were observed and discussed based on the power-law index for the LTCD die. These numerical simulations and numerical data will aid the optimization of the die design in industrial fields.

DC Superconducting fault current limiter characteristic test with a DC circuit breaker

  • So, Jooyeong;Choi, Kyeongdal;Lee, Ji-kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.19-23
    • /
    • 2021
  • We have studied the breaking system that combines a resistive superconducting fault current limiter (SFCL) and a DC circuit breaker for DC fault current. To verify the design of the 15 kV DC SFCL, which was driven from the previous work, a 500 V DC system was built and a scale-down SFCL were manufactured. The manufactured SFCL module was designed as a bifilar coil which is a structure that minimizes inductive reactance. The manufactured SFCL module has been experiment to verify characteristics of the current-limiting performance in the DC 500 V system. Also, the manufactured FCL module was combined with the DC circuit breaker to be experimented to analyze the breaking performance. As a result of the experiment, when SFCL was combined to the DC circuit breaker, the energy dissipation received by the DC circuit breaker was reduced by up to 84% compared to when the DC circuit breaker operates alone. We are preparing methods and experiments for the optimal method for much higher performance as a future work.