https://ettrends.etri.re.kr

ETRI

전자소자 기반 테라헤르츠 반도체 기술 동향

Trends in Terahertz Semiconductor based on Electron Devices

강동우 (D.W. Kang, dw77.kang@etri.re.kr) 구본태 (B.T. Koo, koobt@etri.re.kr) 고속신호처리연구그룹 선임연구원 고속신호처리연구그룹 책임연구원/그룹장

Traditionally, many researchers have conducted research on terahertz technology utilizing optical devices such as lasers. However, nanometer-scale electronic devices using silicon or III-V compound semiconductors have received significant attention regarding the development of a terahertz system owing to the rapid scaling down of devices. This enables an operating frequency of up to approximately 0.5 THz for silicon, and approximately 1 THz for III-V devices. This article reviews the recent trends of terahertz monolithic integrated circuits based on several electronic devices such as CMOS, SiGe BiCMOS, and InP HBT/HEMT, and a particular quantum device, an RTD.

* DOI: 10.22648/ETRI.2018.J.330604

*본 연구는 과학기술정보통신부 및 정보통신기술진흥센터의 정보통신·방송연구개발 사업의 일환으 로 하였음[2017-0-00055, 초고속 통신 및 영상 신호처리를 위한 광/THz 원천기술 연구개발].

출처표시+상업적이용금지+변경금지 조건에 따라 이용할 수 있습니다.

© 2018 한국전자통신연구원

2018 Electronics and Telecommunications Trends

최신 반도체, 하드웨어 기술 동향 특집

- Ⅰ.개요
- II. 실리콘 기반 테라헤르츠 반도체
- Ⅲ. 화합물(Ⅲ-V) 기반 테라헤르츠 반도체
- Ⅳ. 맺음말

ㅣ. 개요

테라헤르츠 대역(0.1~10THz)은 전자기파와 광파 사 이에서 존재하여 전파의 투과성과 광파의 직진성을 모 두 가지며, 낮은 이온화 에너지로 인체에 무해하여 영 상 분광·센싱 분야 등의 다양한 분야에 응용될 수 있다. 특히 종이, 가죽, 천 등과 같은 비극성 재질에 대해 투과 성이 뛰어나고, 수분 함량에 대해 높은 흡수 및 반사 특 성을 가지고 있어 보안 및 식품검사, 화학 검출, 비파괴 영상기기, 바이오 메디컬 분야로의 연구를 해오고 있다. 또한 기존의 마이크로파 혹은 밀리미터파 대역의 주파 수 대비 훨씬 넓은 대역폭을 이용할 수 있기 때문에 차 세대 초고속 인터커넥션 및 무선통신 응용분야에서도 큰 잠재력을 보유하고 있다!(그림 1) 참조].

테라헤르츠 시스템은 전통적으로 펨토초 레이저 펄스 기반의 TDS 시스템을 이용하여 이미징 및 분광 시스템 을 구현해왔고, Teraview와 같은 회사에서는 상용화된 제품을 판매하고 있다[1]. 그러나 시스템의 크기가 상당 히 크고 가격도 고가이기 때문에 편의성과 보급화 측면 에서 제약이 따르고 있다. 따라서 기존의 펄스 기반의 테라헤르츠가 아닌 연속파 형태의 테라헤르츠 신호원 을 구현하여 시스템을 소형화, 저가격화를 위한 연구 및 개발을 해왔으며 최근에는 IMPATT(Impact ionization Avalanche Transit-Time diode)를 이용하여 100~300GHz 대역의 고출력 신호원을 구현하여 판매 하고, 포터블 이미징 시스템에 적용시키고 있다[2]. IMPATT 기반의 테라헤르츠 소스원은 높은 출력을 낼 수 있으나 avalanche process에 의해 위상잡음이 크고, 주로 고정된 주파수를 발생시키기 때문에 주파수를 변 화시켜서 물질의 특성을 추출하는 분광 시스템에는 적 합하지 않다. 전세계적으로 레이저, 전자소자, 진공소자 등 여러 가지 다양한 방법으로 테라헤르츠 신호원을 구 현하기 위해 노력하고 있다[3].

본고에서는 테라헤르츠 신호를 구현하는 여러 방법 중에서 상품화를 달성할 수 있는 전자소자기반의 트랜 지스터를 이용한 테라헤르츠 신호원의 구현과 그 시스 템에 대해 소개하고 주요 내용에 대해 기술하고자 한다.

실리콘 기반 테라헤르츠 반도체

실리콘 기반 테라헤르츠 반도체 기술은 대표적으로 CMOS 혹은 SiGe BiCMOS 소자를 이용하여 테라헤르

(그림 1) 테라헤르츠 시스템의 다양한 응용

(그림 2) 테라헤르츠 신호원 구현 방법: (a) VCO에 의한 하 모닉 성분 추출방법, (b) 체배기에 의한 신호원 생 성

츠 시스템을 구현하는 기술이다. 최근 CMOS 반도체 기 술의 경우 28nm, 14nm와 같이 MOSFET의 성능이 빠 르게 scaling되고 있으며, 최근에는 FD-SOI(Fully Depleted Silicon on Insulator) 혹은 FinFET(Fin Field Effect Transistor)와 같은 소자의 개발로 F_{max} 가 300GHz에 달하고 있다. SiGe HBT 역시 emitter width 를 감소시켜 F_{max} 가 500GHz 근처의 성능을 보여주고 있다[4]. 이러한 실리콘 소자의 급격한 발전으로 100~500GHz 대역의 신호원, 검출기를 구현하고 이미 징 및 분광 시스템으로 응용하는 연구가 활발하게 진행 되고 있다.

F_{max} 근처 혹은 그 이상의 주파 수에서 신호원을 개발 하는 방법은 크게 두 가지 방법으로 구현된다. 자체 발 진하는 VCO(Voltage Controlled Oscillator)의 경우 최대 발진주파수는 소자의 F_{max}를 초과할 수 없기 때문에 (그 림 2a)와 같이 F_{max} 이하의 주파수에서 발진을 시키고 하모닉 성분의 출력을 최대로 하여 추출한다. 이 방법은 하나의 VCO 회로에서 높은 주파수 성분을 추출할 수 있기 때문에 회로 면적 및 소비전력을 최소화할 수 있 다. 단일 VCO의 경우 회로 면적의 대부분이 인덕터에 의해 좌우되고, 발진 주파수가 높아짐에 따라 인덕턴스 가 감소하므로 인덕터의 크기도 작아져서 전체 회로면 적도 감소하는 효과가 있다. 하지만 단일 VCO 구조의

<	표	1)	• 단일	VCO	기반의	테라헤르츠	소스원	성능	비교
---	---	----	------	-----	-----	-------	-----	----	----

Ref.	[5]	[6]	[7]	[8]
Center Freq. (GHz)	256	239	290	210
Tuning range(%)	6.5	12.5	8	10.6
Max. output power(dBm)	4.1	-4.8	-14	1.4
Technology	65–nm CMOS	65–nm CMOS	90–nm SiGe	0.13–µm SiGe
Area(mm ²)	0.43	0.18	N/A	0.027

경우 주파수를 변화시키기 위해 Varactor를 사용하게 되는데, 높은 주파수에서는 트랜지스터에서 발생하는 기생 capacitance가 증가하여 Varactor에 의해 변화되 는 capacitance 변화량이 감소하여 VCO의 발진 주파수 를 변화시키는데 제한적이게 된다. 일반적으로 100GHz 이상의 주파수에서 단일 VCO의 주파수 변화 범위는 5~10% 이내로 보이고 있다[〈표 1〉 참조]

위와 같이 단일 VCO의 좁은 주파수 변화를 극복하기 위해 낮은 주파수 대역에서 발진을 시켜 높은 하모닉 성 분을 추출하는 방법이 제안되기도 한다. J. Zhang et al.,(2015)[9]은 낮은 주파수대역에서 광대역 VCO를 구 현 후, 4개의 Quadrature 신호원(I+, I-, Q+, Q-)을 phase combining 하여 4차 하모닉 성분을 최대화 시킨 구조의 하모닉 성분 추출 방법을 제안하였다. 낮은 주파 수 대역의 VCO는 22.5~37.5GHz까지 변화가 가능한 데, 하나의 inductor와 varactor로는 광대역 주파수 변 화가 어렵기 때문에 3개의 inductor를 switching하여 중심주파수를 변화시킨 구조이다. 따라서 연속적인 주 파수 변화가 아닌, inductor를 스위치로 선택하여 변화 하는 불연속적으로 주파수를 변화시키는 방법이다. 그 리고 4개의 Quadrature 신호에서 4차 하모닉 성분의 위 상을 동일 위상으로 일치시키고 결합하여 출력을 최대화 시켰지만 출력 전력은 -20~-25dBm(90~130GHz) 정 도의 성능을 보여주고 있다[9].

낮은 출력전력을 보완하기 위해 다수의 VCO를 array 형태로 배치하고, VCO와 안테나를 집적화시켜 실제 방 사되는 출력을 높이는 구조도 다양하게 연구되고 있다. Y. Tousi.(2015)[10]은 65nm CMOS 공정을 이용하여 한 칩에서 총 16개(4×4)를 집적화하였다. 각각의 개별 VCO는 85GHz에서 발진을 시키고 4차 하모닉성분인 340GHz의 신호를 칩 안테나에 연결해서 방사시키는 형 태이다. 뿐만 아니라 각 VCO 사이에 distributed phase shifter을 배치하여 각 VCO에서 방사되는 위상을 변화시 킴으로써 2차원 beamforming도 가능한 구조이다. 실제 방사되는 출력전력은 338GHz에서 -0.9dBm의 출력과 □, □ 방향으로 각각 50, 45도까지 변화시킬 수 있었으 나, 전체 소비전력은 1.5W에 달하고 있다.

위와 같이 단일 하모닉 VCO 혹은 출력을 높인 array 형태의 경우 모두 phase locking이 어렵다는 단점을 가 지고 있다. 호모다인 구조의 이미징 시스템이나 noncoherent 통신시스템에서는 VCO만으로도 시스템 구현 이 가능하나, 헤테로다인 방식의 구조나 현재의 무선통 신 시스템과 같은 QAM modulation을 하기 위해서는 PLL(phased locked loop)이 필요로 한다. PLL을 구현하 기 위해서는 기본적으로 VCO와 Frequency Divider가 필요로 하고, VCO를 하모닉 VCO 구조로 높은 주파수 에서 발진을 시키더라도 Frequency divider가 동작이 불가능하기 때문에 (그림 2b)와 같이 주파수 체배기 를 이용하여 구현을 한다. 낮은 주파수대역에서는 PLL은 구현이 쉽기 때문에 N차 체배기 와 M차 체배 기를 직렬로 연결하면 N×M배 체배된 PLL이 구현이 가능하다. 하지만 체배기를 동작시키기 위해서는 충분 한 Fundamental 주파수의 전력이 인가되어야 하고, 추 가적인 전력증폭기가 필요로 하게 된다. 따라서 여러 개 의 전력증폭기와 체배기가 연결되어 구현되기 때문에 칩 면적과 소비전력이 상당히 증가하게 되는 단점이 있다.

K. Schmalz et al.,(2014)은 IHP의 0.13µm SiGe BiCMOS 소자를 이용하여 245GHz 대역의 PLL을 4채 널 Tx array으로 구현하였다[11]. 사용된 트랜지스터의 F_T/F_{max}는 300GHz/500GHz의 성능을 가지고 있기 때 문에 120GHz 의 VCO와 1/64 Divider가 안정적으로 동 작하며, 이를 이용하여 120GHz의 PLL이 구현된다. PLL에서 나온 120GHz 신호는 증폭기와 Wilkinson divider에 의해 4채널로 나누어지게 되며, 각각의 채널 은 온칩 안테나, 체배기, 구동 증폭기로 구성된다. 칩에 서 방사되는 출력은 245GHz에서 약 7dBm으로 측정되 고, 주파수 변화 범위는 238~252GHz으로 중심주파수 에서 약 5% 변화가 가능하다.

이 이외에도 PLL을 구현하기 위해 낮은 주파수에서 구현된 PLL 신호를 injection 시키는 방법들이 많이 제 시되고 있으나 injection 방법에 의한 PLL 구현은 공정 변화, 전원전압 변화, 온도 변화에 민감하고, 좁은 locking range를 가지는 단점이 있다.

Ⅲ. 화합물(Ⅲ-Ⅴ) 기반 테라헤르츠 반도체

실리콘 소자대비 화합물 반도체를 이용하게 되면 높 은 전자 이동도를 가지고 있기 때문에 보다 우수한 트랜 지스터 성능(F_T/F_{max})을 얻을 수 있으며 현재 대부분이 InP(Indium Phosphide) 기반의 화합물 트랜지스터가 주로 연구 발표되고 있다. InP HBT(Hetero Bipolar Transistor) 전자소자는 높은 이득과 전류구동능력으로 g_m(transconductance)이 크고 항복전압이 높아 전력증 폭기를 구현하는데 유리한 소자이다. 미국의 Teledyne 에서 기술을 선도하고 있으며 에미터 폭을 130nm로 감 소시킴으로써 1THz 이상의 F_{max}를 가지는 HBT를 발표 하였다. 미국의 UCSB(University of California, Santa Barbara)에서도 에미터 폭을 300~150nm로 제작하여 1THz 근방의 성능을 얻었고, 이외에 유럽의 NGAS, ETH와 일본의 NTT에서도 연구를 계속하고 있다[12].

InP HEMT(High electronic mobility transistor)는 2-DEG 채널층에서 전자가 고속으로 이동하여 높은 주 파수 특성과 잡음 특성이 우수하여 저잡음 증폭기 혹 은 스위치로 유리한 소자이다. CMOS가 스케일링 되

강동우 외 / 전자소자 기반 테라헤르츠 반도체 기술 동향 37

듯이 HEMT의 게이트 길이도 계속 스케일링 되어 주 파수 특성을 향상시키고 있다. InP HEMT 기술을 선도 하고 있는 곳은 NGAS(Northrop Grumman Aerospace Systems)이고 1998년 게이트 길이를 100nm(*F*_{max}: 0.4 THz)에서 시작하여 2013년 25nm(*F*_{max}: 1.5THz) 까지 향상 시켜왔다[12].

Teledyne에서는 자체에서 개발된 고성능 HBT 소자를 개발함과 동시에 고출력 증폭기도 발표를 하고 있다. Z. Griffith et al.,(2014)[13]은 250nm HBT(F_T=400GHz/ F_{max}=700GHz) 소자를 이용하여 16-cell SSPA(solidstate power amplifier)를 설계한 구조를 제안하였고 210GHz에서 23.2dBm(208.7mW), 235GHz에서 21dBm(126mW)의 성능을 달성하였다. 14dB 이상의 전 력 이득을 얻기 위해 4-cell PA는 3단으로 구성되어있 고, 200mW 이상의 출력을 얻기 위해 각 4-cell PA는 wilkinson divider와 combiner을 이용하여 병렬로 결합 시킨 일반적인 SSPA 구조이다. 전원 전압은 각 Stage 별로 1.9~2V를 사용하고 소비전력은 5.8W에 달하여 PAE가 2~4% 수준이다[14].

NGAS 에서도 2015년 25nm급 InP HEMT를 발표하 면서 1THz에서 동작하는 증폭기도 같이 제시하였다 [12]. F_{max}가 1.5THz이기 때문에 1THz에서의 gain이 매우 적어서 10-stage 증폭기로 구현하여야 9dB의 이 득을 얻을 수 있었다. 그리고 2017년에 850GHz 대역에 서 동작하는 송신기와 수신기를 모듈형태로 구현하였다 [15]. K. Leong et al.(2016)은 수신기는 2-stage LNA (Low noise amplifier)와 sub-harmonic mixer(SHM), 그리고 Mixer를 구동하기 위한 LO(Local oscillator) multiplier chain으로 구성된 형태를 제안하였다. LO 입력은 45.22GHz이고, 9채배되어 SHM을 407GHz 로 구동하게 된다. 따라서 테라헤르츠 대역 주파수 830~865GHz의 신호가 Mixer에 의해 16~51GHz의 IF (Intermediate frequency)로 하향 변환된다. 측정된 수

38 전자통신동향분석 제33권 제6호 2018년 12월

신기의 noise figure는 주파수 12.7~15dB 성능을 보여 주고 LNA의 noise figure는 약 12dB으로 측정되었다. 송신기는 동일한 LO chain을 사용하여 IF 주파수를 830~865GHz 대역으로 상향 변환시키고 3개의 증폭기 를 거쳐 -7~-2.2dBm의 출력으로 송신한다. 소비전력 은 1.2V의 전원전압으로 송신기가 1.16W, 수신기가 1.11W를 소모하고 있다[15].

InP HBT/HEMT 이외에 테라헤르츠 신호를 구현하 기 위해 RTD(Resonant Tunneling Diode) 소자를 이 용하여 발진기를 구현하는 연구도 진행되고 있다. 1990년 후반의 UCSB에서 RTD 기반의 신호원 개발을 시작으로, 2000년대 중반에는 TTT(Tokyo Institute of Technology) 와 NNT 연구소가 협력하여 RTD 신호원 기술을 선도하고 있다. RTD도 화합물 반도체를 이용한

(그림 3) RTD 원리 및 RTD oscillator 구조: (a) RTD 동작원 리 (b) RTD 발진기 구조

[출처] H. Sugiyama et al., "Room-Temperature Resonant-Tunneling-Diode Terahertz Oscillator Based on Precisely Controlled Sem-iconductor Epitaxial Growth Technology," *NTT Technical Rev.*, vol. 9, no. 10, Oct. 2011, pp. 1-6.

소자인데. InP 기판위에 양자우물(Quantum well)을 형 성하여 양자 효과 중 하나인 공명 터널형상을 이용하는 반도체 소자이다. (그림 3a)와같이 RTD에 전압을 일정 하게 증가시키면 전류가 전압에 비례하여 증가하다가 ((a)->(b)), 특정 전압지점(V_b)에서 공진 에너지 레벨에 도달하게 되어 최대의 전류가 흐르게 되고 더 전압을 인 가하게 되면 공진 에너지 레벨이 에미터의 컨덕션 밴드 아래로 떨어지게 되어 전류가 급격하게 떨어진다. 여기 서 전압이 증가하나 전류가 감소하는 구간((b)-(c))에서 NDC(negative differential conductance) 특성을 보이므 로 발진기를 구현할 수 있다. (그림3b)에서 나타나듯이 RTD를 음의 저항과 Capacitance로 모델링하고, 안테나 를 양의저항, 그리고 안테나의 공진 주파수에 해당하는 L과 C로 모사하면, RTD와 안테나만으로 발진기가 구현 이 된다. InP 기반의 InGaAs/AlAs RTD를 이용하여 2011년 1.04THz에서 7µW(-22dBm), 2017년 1.98THz 발진기를 구현하였다[16], [17].

Ⅳ. 맺음말

본고에서는 테라헤르츠 대역의 시스템을 구현하기 위 해 전자소자 기반의 소자에 대해 기술하고 각 기술별 특 징을 분석하였다. 실리콘 기반의 반도체는 CMOS/SiGe 의 공정 스케일링이 빠르게 진행되고 있어 트랜지스터 의 주파수 성능이 향상되고 있고, 현재 발표 되고 있는 논문은 100~500GHz 대역에서 이미징, 분광, 통신으로 적용되고 있다. 화합물 기반의 소자인 InP HBT/HEMT 소자는 과거에서부터 현재까지 지속적으로 해외 연구 소, 학교에서 연구해오고 있으며, 최근 1THz 이상의 성 능을 가지는 트랜지스터를 발표하고, 200~800GHz 대 역의 고성능 부품에 적용하고 있다. InP 기반의 RTD는 NDC 라는 고유의 소자 특성을 가지고 있어 RTD와 안테 나만으로 간단하게 테라헤르츠 신호를 구현할 수 있다.

현재 핸드폰에 장착되는 5GHz 이하 대역에서 무선

송수신 칩은 CMOS 기술이 사용되는 반면 PA, LNA, Switch와 같은 FEM(Front-End Module)은 여전히 GaAs 기반의 화합물 반도체로 구현되고 있다. 과거 실 리콘 소자의 성능부족으로 화합물 소자 기반으로 시작 했던 60GHz 대역의 경우, 802.11ad/ay 같은 무선 송수 신 칩은 현재 CMOS 기술로 대체가 되었지만, Backhaul 과 같이 고성능 사양이 필요한 곳에서는 화합물 반도체 기반의 소자가 사용되고 있다. 또한, Zing과 같은 초근 접 통신의 경우 PLL보다는 Oscillator 기반으로 하는 저 전력 설계가 필요한 분야이다. 따라서 어느 하나의 소자 기술이 전체 시장을 점유할 수 없듯이 테라헤르츠 대역 의 소자도 적용분야별로 서로 다른 반도체 기술의 필요 할 것이고, 미래의 시장에 적재적소로 유연하게 대응하 기 위해 다양한 반도체 기술에 대한 원천 기술 확보가 필요한 시점이다. 또한, 테라헤르츠 대역에서는 파장이 짧아져서 안테나의 집적화 및 모듈화가 가능해지기 때 문에 안테나 기술, 인터커넥션의 손실을 최소화하는 기 술. 실리콘과 화합물 칩간의 이종집적화 기술 등이 병행 되어 연구되어야 할 것이다.

약어 정리

FD-SOI	Fully Depleted Silicon on Insulator
FEM	Front-End Module
FinFET	Fin Field Effect Transistor
HBT	Hetero Bipolar Transistor
HEMT	High Electronic Mobility Transistor
IF	Intermediate Frequency
IMPATT	Impact ionization Avalanche Transit Time Diode
InP	Indium Phosphide
LNA	Low Noise Amplifier
LO	Local Oscillator
NDC	Negative Differential Conductance
NGAS	Northrop Grumman Aerospace Systems
PLL	Phased Locked Loop
RTD	Resonant Tunneling Diode
SHM	Sub-Harmonic Mixer

- SSPA Solid-State Power Amplifier
- TIT Tokyo Institute of Technology
- UCSB University of California, Santa Barbara
- VCO Voltage Controlled Oscillator

참고문헌

- [1] TeraView, "Teraherts Equipment," http://www.teraview. com/products/TeraPulse%204000/index.html
- [2] Terasense, http://terasense.com/
- [3] C.M. Armstrong, "The Truth about Terahertz," *IEEE Spectrum*, vol. 49, no. 9, Sept. 2012, pp. 36–41.
- [4] R.L. Schmid et al., "A Comparison of the Degradation in RF Performance due to Device Interconnects in Advanced SiGe HBT and CMOS Technologies," *IEEE Trans. Electron Devices*, vol. 62, no. 6, June 2015, pp. 1803–1810.
- [5] M. Adnan and E. Afshari, "A 247-to-263.5 GHz VCO with 2.6mW Peak Output Power and 1.14% DC-to-RF Efficiency in 65nm Bulk CMOS," *IEEE Int. Solid–State Circuits Conf. (ISSCC) Dig. Tech. Papers*, San Francisco, CA, USA, Feb. 2014, pp. 262–263.
- [6] H. Koo et al., "Design and Analysis of 239 GHz CMOS Push-Push Transformer-Based VCO with High Efficiency and Wide Tuning Range," *IEEE Trans. Circuits Syst. I, Reg.* Papers, vol. 62, no. 7, July 2015, pp. 1883–1893.
- [7] P.Y. Chinag et al., "A Silicon–Based 0.3 THz Frequency Synthesizer with Wide Locking Range," *IEEE J. Solid State Circuits*, vol. 49, no. 12, Dec. 2014, pp. 2951–2963.
- [8] C. Jiang et al., "An Efficient 210 GHz Compact Harmonic Oscillator with 1.4 dBm Peak Output Power and 10.6% Tuning Range," *IEEE Radio Freq. Integr. Circuits Symp.* (*RFIC*), San Francisco, CA, USA, May 2016, pp. 194–197.
- [9] J. Zhang et al., "85-to-127 GHz CMOS Signal Generation Using a Quadrature VCO with Passive Coupling and

Broadband Harmonic Combining for Rotational Spectroscopy," *IEEE J. Solid State Circuits*, vol. 50, no. 6, June 2015, pp. 1361–1371.

- [10] Y. Tousi and E. Afshari, "A High–Power and Scalable 2–D Phased Array for Terahertz CMOS Integrated Systems," *IEEE J. Solid State Circuits*, vol. 50, no. 2, Feb. 2015, pp. 597–609.
- [11] K. Schmalz et al., "245 GHz SiGe Transmitter for Gas Spectroscopy," *IEEE Compound Semicond. Integr. Circuit Symp.*, La Jolla, CA, USA, Oct. 2014, pp. 1–4.
- [12] X. Mei et al., "First Demonstration of Amplification at 1 THz using 25-nm InP High Electron Mobility Transistor Process," *IEEE Electron Device Lett.*, vol. 36, no. 4, Apr. 2015, pp. 327–329.
- [13] Z. Griffith et al., "A 23.2 dBm at 210 GHz to 21.0dBm at 235 GHz 16-Way PA-cell combined InP HBT SSPA," *IEEE Compound Semicond. Integr. Circuit Symp.*, La Jolla, CA, USA, Oct. 2014, pp. 1–4.
- [14] M. Urteaga et al., "InP HBT Technologies for THz Integrated Circuits," *Proc. IEEE*, vol. 105, no. 6, May 2017, pp. 1051–1067.
- [15] K. Leong et al., "850 GHz Receiver and Transmitter Front-Ends Using InP HEMT," IEEE Trans. THz Sci. Technol., vol. 7, no. 4, July 2017, pp. 466–475.
- [16] H. Sugiyama et al., "Room-Temperature Resonant-Tunneling-Diode Terahertz Oscillator Based on Precisely Controlled Semiconductor Epitaxial Growth Technology," *NTT Technical Rev.*, vol. 9, no. 10, Oct. 2011, pp. 1–6.
- [17] R. Izumi et al., "1.98 THz Resonant-Tunneling-Diode Oscillator with Reduced Conduction Loss by Thick Antenna Electrode," Int. Conf. Infrared, Millimeter, Terahertz Waves (IRMMW-THz), Cancun, Mexico, Aug. 2017, pp. 1–2.