• Title/Summary/Keyword: satellite transmission

Search Result 470, Processing Time 0.023 seconds

A Routing Scheme by Normalized Transmission Characteristics (NTCR) for Multi-Carrier MANETs at Sea (다중캐리어 해상 MANET을 위한 정규화된 전송특성에 의한 경로배정방식)

  • Son, Joo-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1092-1097
    • /
    • 2011
  • Data communications at sea are done by the traditional radio and satellite carriers. Because of the restrictions on the data rate and cost of the carriers, a novel data communication system at sea is needed. Nowadays the efforts to make use of the broadband land carriers at sea have been pursued. This paper proposes a routing scheme (NTCR) using the various carriers on land for a MANET model at sea. The NTCR scheme optimizes the route using a chosen carrier by taking considerations of normalized transmission characteristics (NTC) of applications and carriers. The NTCR scheme is compared with the MWR (max-win based routing) scheme.

A Design Method for Pre-Distortion Compensation of SAR Chirp Signal based on Envelop Sampling and Interpolation Filter (위성 탑재 영상레이다 첩 신호의 전치왜곡 보상을 위한 포락선 샘플링 및 보간 필터 기반의 설계 기법)

  • Lee, Young-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.347-354
    • /
    • 2022
  • The synthetic aperture radar(SAR) is an equipment that can acquire images in all weathers day and night based on radar signals. The on-board processor of satellite SAR generates transmission signal by digital signal processing, converts it into an analog signal and transmits to antenna. Until the transmission signal generated by on-board processor is output, the signal passes the transmission cables and analog devices. At this time, these hardware distort the signal and makes SAR performance worse. To improve the performance, pre-distortion technique is used. But, general pre-distortion using taylor series is not sufficient to compensate for the distortion. This paper suggests transmit signal design method with improved pre-distortion. This paper uses envelop sampling method and interpolation filter for frequency domain compensation. The proposed method accurately compensates the hardware distortion and reduces resource usage of FPGA. To analyze proposed method's performance, IRF characteristics are compared when the proposed method applies to signal with errors.

Evaluation of Sensitivity and Retrieval Possibility of Land Surface Temperature in the Mid-infrared Wavelength through Radiative Transfer Simulation (복사전달모의를 통한 중적외 파장역의 민감도 분석 및 지표면온도 산출 가능성 평가)

  • Choi, Youn-Young;Suh, Myoung-Seok;Cha, DongHwan;Seo, DooChun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1423-1444
    • /
    • 2022
  • In this study, the sensitivity of the mid-infrared radiance to atmospheric and surface factors was analyzed using the radiative transfer model, MODerate resolution atmospheric TRANsmission (MODTRAN6)'s simulation data. The possibility of retrieving the land surface temperature (LST) using only the mid-infrared bands at night was evaluated. Based on the sensitivity results, the LST retrieval algorithm that reflects various factors for night was developed, and the level of the LST retrieval algorithm was evaluated using reference LST and observed LST. Sensitivity experiments were conducted on the atmospheric profiles, carbon dioxide, ozone, diurnal variation of LST, land surface emissivity (LSE), and satellite viewing zenith angle (VZA), which mainly affect satellite remote sensing. To evaluate the possibility of using split-window method, the mid-infrared wavelength was divided into two bands based on the transmissivity. Regardless of the band, the top of atmosphere (TOA) temperature is most affected by atmospheric profile, and is affected in order of LSE, diurnal variation of LST, and satellite VZA. In all experiments, band 1, which corresponds to the atmospheric window, has lower sensitivity, whereas band 2, which includes ozone and water vapor absorption, has higher sensitivity. The evaluation results for the LST retrieval algorithm using prescribed LST showed that the correlation coefficient (CC), the bias and the root mean squared error (RMSE) is 0.999, 0.023K and 0.437K, respectively. Also, the validation with 26 in-situ observation data in 2021 showed that the CC, bias and RMSE is 0.993, 1.875K and 2.079K, respectively. The results of this study suggest that the LST can be retrieved using different characteristics of the two bands of mid-infrared to the atmospheric and surface conditions at night. Therefore, it is necessary to retrieve the LST using satellite data equipped with sensors in the mid-infrared bands.

Detection of Phase Error Due to the Doppler Effect in Low Earth Orbit Mobile Satellite Communication Network in the Presence of Interference and Rician Fading (간섭과 Rician 페이딩이 존재하는 저궤도 이동 위성 통신망에서 도플러 효과에 따르는 위상 에러의 검출)

  • 조훈주;김영철;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.1
    • /
    • pp.71-82
    • /
    • 1996
  • In this paper, the Doppler phase error due to the relative velocity between a satellite and the earth station in communications using a low earth orbit mobile satellite is detected. The performance of BPSK system in the presence of Rician fading with Doppler phase error and interference, noise is compared with that of the system disturbed by Doppler phase error and noise only. The expression of error rate performance of BPSK system is derived as the type of complementary error function. The numerical calculation of the induced equation are performed in terms of satellite-height, orbit-eccentricity, the velocity of the earth, Rician fading parameter, signal to interference rateio (SIR), the ratio of carrier frequency and base band bit rate. The main conclusion that can be drawn from this analysis is that Rician fading channel environment with Doppler phase error and interference effect yields severe performance degradation than Do- ppler phase error and noise effect in satellite communication channel. And using the numerical calculation, we give a quantitative insight how much the satellite communication channel parameters degrade the system performance. Furthermore it is shown that an appropriate transmission power control for the performance enhancement is beneficial to the new satellite communication system planning.

  • PDF

A Slow Frequency Hopping Transmission Method using Carrier Superpositioning and Frequency Diversity for the Satellite Datalink (저속 주파수 도약 방식 위성 데이터링크에서 송수신 신호중첩 및 주파수 다이버시티 적용)

  • Kim, Ki-Keun;Lee, Min-Woo;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11A
    • /
    • pp.924-932
    • /
    • 2011
  • In this paper, we propose a possibility of usage of carrier superpositioning scheme for a specific slow frequency hopping(SFH) transmission method for the satellite data link in which all of hopping carriers have to be synchronized to DSM transponder of our previous work and usage of frequency diversity in the saved frequency to overcome the SFH disadvantage against jammer. We have analyzed anti-jamming performance and LPI performance and confirmed that the proposed scheme can support data service with 18.5dB processing gain against the worst case partial band jamming and give 2.5dB gain in the LPI performance against D&M detector which can estimate the data rate of unknown signals.

Design of Ultra Wide Band MMIC Digital Attenuator with High Attenuation Accuracy (높은 감쇠 정확도를 가지는 초광대역 MMIC 디지털 감쇠기 설계)

  • Ju Inkwon;Yom In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.101-109
    • /
    • 2006
  • A broadband, DC to 40 GHz 5-bit MMIC digital attenuator has been developed. The ultra broadband attenuator has been achieved by adding transmission lines in the conventional Switched-T attenuator and optimizing the transmission line parameters. Momentum simulation was performed in design for accurate performance prediction at high frequencies and Monte Carlo analysis was applied to verify the performance stability against the MMIC process variation. The attenuator has been fabricated with $0.15\;{\mu}m$ GaAs pHEMT process. This attenuator has 1 dB resolution and 23 dB dynamic ranges. High attenuation accuracy has been achieved over all attenuation ranges and 40 GHz bandwidth with the reference state insertion loss of less than 6 dB at 20 GHz. The input and output return losses of the attenuator are better than 14 dB over all attenuation states and frequencies. The measured IIP3 of the attenuator is 33 dBm.

A Study on the Design of High Gain and Wideband Microstrip Array Antenna for Satellite Communications (위성통신용 고이득 광대역 마이크로스트립 배열 안테나의 설계연구)

  • 윤현보;임계재
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.3
    • /
    • pp.32-40
    • /
    • 1991
  • A modified transmission line model is proposed for input impedance analysis of a square microstip antenna with single-circularly-polarized. Alog-periodic arrangement with microstrip antenna (LPMA) which consists of 3 resonant element ($3\times1$) is designed for broadband operation ranging from 11.2 GHz to 12.4 GHz, based on this pro- posed model from transmission line model. Aplanar array ($3\times4$array), in which 4sets of the above LPMA are in the same plane, is fabricated for high gain X-band satellite communication antennas. The optimum spacing between each LPMA is determined using computer simulation for the minimum bariation of far field pattern and null. This $3\times4$array has a measured values of gain greater than 8dBi, VSWR les then 2.3, and bandwidth greater than 7% respectively.

  • PDF

Performance of Interference Mitigation for Visible Light Communi cation System (가시광 통신 시스템의 간섭 완화 성능)

  • Park, In-Hwan;Kim, Yoon-Hyun;Kim, Jin-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • The VLC (visible light communication) system is communication technology using visible rays (RGB) that come out in LED device. It is energy curtailment effect and possible in ubiquitous network service applications. Also, VLC system has the above advantage about that the communication throughout the whole room is enabled by high power lighting and lighting equipment with white colored LED which are easy to install and have good outward appearance. However, the signal detection performance for the receiver near the network of transmitter boundary is severely degraded and the transmission efficiency decreased due to the influence of the interference signal from the adjacent networks. In this paper, we propose an interference mitigation method with optical beamforming in VLC systems, and evaluate the reception performance. For the system BER, the proposed optical beamforming transmission demonstrates the performance enhancement compared to the not using the optical beamforming scheme, and up to about 5~6dB SNR performance gain is achieved.

Opportunistic Spectrum Access Using Optimal Control Policy in RF Energy Harvesting Cognitive Radio Networks (무선 에너지 하비스팅 인지 무선 네트워크에서 최적화 제어 정책을 이용한 선택적 스펙트럼 접근)

  • Jung, Jun Hee;Hwang, Yu Min;Cha, Gyeong Hyeon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.6-10
    • /
    • 2015
  • RF energy harvesting technology is a promising technology for generating the electrical power from ambient RF signal to operate low-power consumption devices(eg. sensor) in wireless communication networks. This paper, motivated by this and building upon existing CR(Cognitive Radio) network model, proposes a optimal control policy for RF energy harvesting CR networks model where secondary users that have low power consumption harvest ambient RF energy from transmission by nearby active primary users, while periodically sensing and opportunistically accessing the licensed spectrum to the primary user's network. We consider that primary users and secondary users are distributed as Poisson point processes and contact with their intended receivers at fixed distances. Finally we can derive the optimal frame duration, transmission power and density of secondary user from the proposed model that can maximize the secondary users's throughput under the given several conditions and suggest future directions of research.

Channel Selection Using Optimal Channel-Selection Policy in RF Energy Harvesting Cognitive Radio Networks (무선 에너지 하비스팅 인지 무선 네트워크에서 최적의 채널 선택 정책을 이용한 채널 선택)

  • Jung, Jun Hee;Hwang, Yu Min;Cha, Gyeong Hyeon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.1-5
    • /
    • 2015
  • Recently, RF energy harvesting technology is a promising technology for small-size IoT(Internet of Things) devices such as sensor to resolve battery scarcity problem. When applied to existing cognitive radio networks, this technology can be expected to increase network throughput through the increase of cognitive user's operating time. This paper proposes a optimal channel-selection policy for RF energy harvesting CR networks model where cognitive users in harvesting zone harvest ambient RF energy from transmission by nearby active primary users and the others in non-harvesting zone choose the channel and communicate with their receiver. We consider that primary users and secondary users are distributed as Poisson point processes and contact with their intended receivers at fixed distances. Finally we can derive the optimal frame duration, transmission power and density of secondary user from the proposed model that can maximize the secondary users's throughput under the given several conditions and suggest future directions of research.