• Title/Summary/Keyword: satellite thermal design

Search Result 160, Processing Time 0.027 seconds

BRIEF REPORTS ON KAISTSAT-4 MISSION ANALYSIS

  • Seon, J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.233-240
    • /
    • 2000
  • Five scientific instruments are planned on KAISTSAT-4 that is scheduled to be launched in 2002. A far ultra-violet imaging spectrograph and a set of space plasma instruments are currently being designed. The imaging spectrograph will make observations of astronomical objects and Earth's upper atmosphere. The plasma instrumentation is capable of fast measuring the thermal magnetosphere plasmas, cold ionospheric plasmas and the Earth's magnetic fields. Major system drivers and constraints on the payloads as well as the spacecraft are identified. A preliminary analysis of the K-4 mission has been undertaken with the system requirements that are derived from the system drivers. Detailed investigation shows that Sun-synchronous orbits with approximate altitudes of 800km are optimal to satisfy the identified requirements. Comparisons with other orbits of different inclinations are also shown. Four operation modes and a daily schedule of spacecraft maneuver are found from the Sun-synchronous orbital model. It is shown that the scientific objectives of K-4 can be achieved with moderate levels of design and operation risks.

  • PDF

Analysis of Monopropellant Thruster Plume Effects by DSMC (DSMC를 이용한 단일추진제 추력기 플룸의 영향 해석)

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Kim, Su-Kyum;You, Jae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.179-182
    • /
    • 2007
  • The new KOMPSAT in preliminary design phase will utilize 4.45 N monopropellant thrusters for attitude and orbit control. In this paper, a numerical plume analysis is performed to verify the effects of thruster plume on the satellite with a 3-D satellite base region model by DSMC. As a result, plume behaviors such as overall plume temperature, total density and thermal radiation to solar array are estimated.

  • PDF

Environmental test of wideband waveguide input filter in ku-band satellite transponder (Ku-band 위성중계기내 광대약 도파관형 입력여파기에 대한 환경시험 수행에 관한연구)

  • 유경완;박광량
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.4
    • /
    • pp.84-91
    • /
    • 1996
  • Input filter for satellite communication transponder is the interface between the antenna and the receiver. It is used to provide the selection of the uplink signals with minimum insertion loss and to prevent downlink signals form reaching the LNA. This paper is intended to provide a description of the input filter for KOREASAT communication transponder. Included are description for the electrical and mechanical design and the requirments of environmental test. In expecting the electrical performine the optimum electrical configuration ot meet all requirements are performed. Mechanical requirements are charactersed by several constraints for weight, size of the filter and its type of input output interface. The standardized environmental tests are performed to confirm satisfactory performance of the filter with respect to the requirements of vibration and thermal vacuum shocks.

  • PDF

A Study on Input Multiplexer for Ku-Band Satellite Transponder (Ku 대역 위성 중계기용 입력 멀티플렉서에 관한 연구)

  • 이주섭;엄만석;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.393-400
    • /
    • 2003
  • This paper deals with the design and manufacturing technique of EQM(Engineering Qualification Model) of input multiplexer(IMUX) for the Ku-band satellite transponder. Channel dropping method by circulator chain structure is adopted for demultiplexing each channel. External equalizers are attached behind channel filters fur reduction of group delay variation and amplitude variation simultaneously. Both channel filters and equalizers adopted dual-mode technique in design f3r mass and volume reduction. Channel filters are designed to have 8-pole elliptic response and equalizers to be of 2-pole reflection type. For good temperature stability characteristics, INVAR36 material is used for channel filters and external equalizers. Vibration test, Thermal Vacuum Test, and EMC test have been performed on input multiplexer and it is shown to be suitable for Ku-band satellite transponder.

Results Analysis for On-orbit Operation of KOMPSAT-1 Propulsion System (다목적실용위성 1호 추진시스템 궤도운용 결과 분석)

  • 김정수;한조영;진익민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.107-113
    • /
    • 2000
  • Design configuration and performance requirements for KOMPSAT-1 propulsion system were described. Operational results of the propulsion system obtained through the satellite Launch and Early Operation Phase were scrutinized. Performance characteristics of the thrusters which are employed for spacecraft attitude control and the corresponding propellant depletion rate were analysed according to satellite operation modes. Additionally, propellant leakproof and thermal control capability were checked out from the view point of system verification. Propellant depletion rates calculated by PVT method in $\Delta$V maneuvering and each attitude control mode produce the very meaningful results for the prediction of total propellant consumption up to the end of satellite mission life.

  • PDF

Optimal Design of ESD Protection Device with different Channel Blocking Ion Implantation in the NSCR_PPS Device (NSCR_PPS 소자에서 채널차단 이온주입 변화에 따른 최적의 정전기보호소자 설계)

  • Seo, Yong-Jin;Yang, Jun-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.21-26
    • /
    • 2016
  • The ESD(electrostatic discharge) protection performance of PPS(PMOS pass structure) embedded N-type silicon controlled rectifier(NSCR_PPS) device with different implant of channel blocking region was discussed for high voltage I/O applications. A conventional NSCR standard device shows low on-resistance, low snapback holding voltage and low thermal breakdown voltage, which may cause latch-up problem during normal operation. However, our proposed NSCR_PPS devices with modified channel blocking structure demonstrate the improved ESD protection performance as a function of channel implant variation. Therefore, the channel blocking implant was a important parameter. Since the modified device with CPS_PDr+HNF structure satisfied the design window, we confirmed the applicable possibility as a ESD protection device for high voltage operating microchips.

Optimal Design of the Flexure Mounts for Satellite Camera by Using Design of Experiments (실험계획법을 이용한 인공위성 주반사경 플렉셔 마운트의 최적 설계)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.693-700
    • /
    • 2008
  • The primary mirror system in a satellite camera is an opto-mechanically coupled system for a reason that optical and mechanical behaviors are intricately interactive. In order to enhance the opto-mechanical performance of the primary mirror system, opto-mechanical behaviors should be thoroughly investigated by using various analysis procedures such as elastic, thermo-elastic, optical and eigenvalue analysis. In this paper, optimal design of the bipod flexure mounts for high opto-mechanical performance is performed. Optomechanical performances considered in this paper are RMS wavefront error under the gravity and thermal loading conditions and 1st natural frequency of the mirror system. The procedures of the flexure mounts design based on design of experiments and statistics is as follows. The experiments for opto-mechanical analysis are constructed based on the tables of orthogonal arrays and analysis of each experiment is carried out. In order to deal with the multiple opto-mechanical properties, MADM (Multiple-attribute decision making) is employed. From the analysis results, the critical design variables of the flexure mounts which have dominant influences on opto-mechanical performance are determined through analysis of variance and F-test. The regression model in terms of the critical design variables is constructed based on the response surfaceanalysis. Then the critical design variables are optimized from the regression model by using SQP algorithm. Opto-mechanical performance of the optimal bipod flexure mounts is verified through analysis.

Conceptual Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Lee, Dae-Hee;Pyo, Jeonghyun;Moon, Bongkon;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Matsumoto, Toshio;Takeyama, Norihide;Enokuchi, Akito;Shin, Goo-Whan;Chae, Jangsoo;Nam, Uk-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • The NISS onboard NEXTSat-1 is being developed by Korea astronomy and space science institute (KASI). For the study of the cosmic star formation history, the NISS performs the imaging spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, star-forming regions and so on. It is designed to cover a wide field of view ($2{\times}2$ deg) and a wide wavelength range from 0.95 to $3.8{\mu}m$ by using linear variable filters. In order to reduce the thermal noise, the telescope and the infrared sensor are cooled down to 200 K and 80 K, respectively. Evading a stray light outside the field of view and making the most use of limited space, the NISS adopts the off-axis reflective optical system. The primary and the secondary mirrors, the opto-mechanical part and the mechanical structure are designed to be made of aluminum material. It reduces the degradation of optical performance due to a thermal variation. This paper presents the study on the conceptual design of the NISS.

Space Business and Applications of Vacuum Technology (우주개발과 진공기술의 응용)

  • Lee, Sang-Hoon;Seo, Hee-Jun;Yoo, Seong-Yeon
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.270-277
    • /
    • 2008
  • Vacuum is any air or gas pressure less than a prevailing pressure in an environmental or, specifically, any pressure lower than the atmospheric pressure and is used by a wide variety of scientists and engineering - including clean environment, thermal insulation, very long mean free path, plasma, space simulation[1]. The space environment is characterized by such a severe condition as high vacuum, and very low and high temperature. Since a satellite will be exposed to such a space environment as soon as it goes into its orbit, space environmental test should be carried out to verify the performance of the satellite on the ground under the space environmental conditions. A general and widely used method to simulate the space environment is using a thermal vacuum chamber which consists of vacuum vessel and thermally controlled shroud. As indicated by name of vacuum chamber, the vacuum technology is applied to design and manufacture of the thermal vacuum chamber. This paper describe the vacuum technology which is applied to space business.

저궤도 관측위성용 구조 및 열 개발모델 추진시스템의 설계 및 해석

  • Kim, Jeong-Soo;Lee, Kyun-Ho;Han, Cho-Young
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.76-82
    • /
    • 2003
  • To guarantee the proper functions of a satellite in the extreme space environment, the several test models are developed generally. There are advantages that the design and the analysis of Flight Model(FM) can be validated through these test models, and the functional reliabilities can be increased by reflecting the modifications on the final design of FM. The integration and test of Structure & Thermal Model(STM) of KOMPSAT, being currently developed, have been completed. In this paper, the processes of design and analysis of the STM propulsion system, one of the KOMPSAT modules, are described.

  • PDF