• Title/Summary/Keyword: satellite school

Search Result 853, Processing Time 0.024 seconds

Analysis and Validation of Soil Moisture Data over the Korean Peninsula Simulated by the VIC Model (VIC 모형을 이용하여 모의된 한반도 토양수분 자료의 분석 및 검증)

  • Cho, Eunsaem;Song, Sung-uk;Yoo, Chulsang
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.52-62
    • /
    • 2017
  • In this study, land surface model was used to simulate the soil moisture of South and North Korea for the past 30 years, and the difference in their variation was analyzed. In addition, satellite observed soil moisture data provided by Soil Moisture CCI was analyzed to evaluate the simulation results of VIC model. For the comparison between the simulated and observed data, the CSEOF analysis was applied to indirectly assess the performance of the VIC model rather than simply comparing soil moisture values. The results of this study are summarized as follows. First, the annual variability of soil moisture showed a similar tendency in both South and North Korea, but it was found that the soil moisture in South Korea was as high as 1%, up to 7%, higher than the soil moisture in North Korea. Secondly, the soil moisture in spring between April to June is similar in South and North Korea, whereas the soil moisture after the rainy season is up to 40% in South Korea, but remains at maximum 32% in North Korea. Third, the overall simulated soil moisture is about 4% smaller than the satellite observed soil moisture, but the degree of increase over the past 30 years is similar to that of satellite observed soil moisture. Finally, a comparison of the CSEOF from the satellite observed soil moisture and the VIC model derived soil moisture showed that the soil moisture from April to June shows a much different pattern from each other. However, in July and October, there was a slight similarity, and it was confirmed that August and September has quite similar patterns.

Analysis of a CubeSat Magnetic Cleanliness for the Space Science Mission (우주과학임무를 위한 큐브위성 자기장 청결도 분석)

  • Jo, Hye Jeong;Jin, Ho;Park, Hyeonhu;Kim, Khan-Hyuk;Jang, Yunho;Jo, Woohyun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • CubeSat is a satellite platform that is widely used not only for earth observation but also for space exploration. CubeSat is also used in magnetic field investigation missions to observe space physics phenomena with various shape configurations of magnetometer instrument unit. In case of magnetic field measurement, the magnetometer instrument should be far away from the satellite body to minimize the magnetic disturbances from satellites. But the accommodation setting of the magnetometer instrument is limited due to the volume constraint of small satellites like a CubeSat. In this paper, we investigated that the magnetic field interference generated by the cube satellite was analyzed how much it can affect the reliability of magnetic field measurement. For this analysis, we used a reaction wheel and Torque rods which have relatively high-power consumption as major noise sources. The magnetic dipole moment of these parts was derived by the data sheet of the manufacturer. We have been confirmed that the effect of the residual moment of the magnetic torque located in the middle of the 3U cube satellite can reach 36,000 nT from the outermost end of the body of the CubeSat in a space without an external magnetic field. In the case of accurate magnetic field measurements of less than 1 nT, we found that the magnetometer should be at least 0.6 m away from the CubeSat body. We expect that this analysis method will be an important role of a magnetic cleanliness analysis when designing a CubeSat to carry out a magnetic field measurement.

Drought Hazard Assessment using MODIS-based Evaporative Stress Index (ESI) and ROC Analysis (MODIS 위성영상 기반 ESI와 ROC 분석을 이용한 가뭄위험평가)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Hong, Eun-Mi;Kim, Taegon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.51-61
    • /
    • 2020
  • Drought events are not clear when those start and end compared with other natural disasters. Because drought events have different timing and severity of damage depending on the region, various studies are being conducted using satellite images to identify regional drought occurrence differences. In this study, we investigated the applicability of drought assessment using the Evaporative Stress Index (ESI) based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images. The ESI is an indicator of agricultural drought that describes anomalies in actual and reference evapotranspiration (ET) ratios that are retrieved using remotely sensed inputs of Land Surface Temperature (LST) and Leaf Area Index (LAI). However, these approaches have a limited spatial resolution when mapping detailed vegetation stress caused by drought, and drought hazard in the actual crop cultivation areas due to the small crop cultivation in South Korea. For these reasons, the development of a drought index that provides detailed higher resolution ESI, a 500 m resolution image is essential to improve the country's drought monitoring capabilities. The newly calculated ESI was verified through the existing 5 km resolution ESI and historical records for drought impacts. This study evaluates the performance of the recently developed 500 m resolution ESI for severe and extreme drought events that occurred in South Korea in 2001, 2009, 2014, and 2017. As a result, the two ES Is showed high correlation and tendency using Receiver Operating Characteristics (ROC) analysis. In addition, it will provide the necessary information on the spatial resolution to evaluate regional drought hazard assessment and and the small-scale cultivation area across South Korea.

Classification of Water Areas from Satellite Imagery Using Artificial Neural Networks

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Jung, Won-Jo
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • Every year, several typhoons hit the Korean peninsula and cause severe damage. For the prevention and accurate estimation of these damages, real time or almost real time flood information is essential. Because of weather conditions, images taken by optic sensors or LIDAR are sometimes not appropriate for an accurate estimation of water areas during typhoon. In this case SAR (Synthetic Aperture Radar) images which are independent of weather condition can be useful for the estimation of flood areas. To get detailed information about floods from satellite imagery, accurate classification of water areas is the most important step. A commonly- and widely-used classification methods is the ML(Maximum Likelihood) method which assumes that the distribution of brightness values of the images follows a Gaussian distribution. The distribution of brightness values of the SAR image, however, usually does not follow a Gaussian distribution. For this reason, in this study the ANN (Artificial Neural Networks) method independent of the statistical characteristics of images is applied to the SAR imagery. RADARS A TSAR images are primarily used for extraction of water areas, and DEM (Digital Elevation Model) is used as supplementary data to evaluate the ground undulation effect. Water areas are also extracted from KOMPSAT image achieved by optic sensors for comparison purpose. Both ANN and ML methods are applied to flat and mountainous areas to extract water areas. The estimated areas from satellite imagery are compared with those of manually extracted results. As a result, the ANN classifier performs better than the ML method when only the SAR image was used as input data, except for mountainous areas. When DEM was used as supplementary data for classification of SAR images, there was a 5.64% accuracy improvement for mountainous area, and a similar result of 0.24% accuracy improvement for flat areas using artificial neural networks.

  • PDF

Design and Implementation of NNI Call Procedure for OBP Satellite B-ISDN (OBP 탑재 위성 B-ISDN 중계망 호 처리 절차의 설계 및 구현)

  • Lee, Jun-Ho;Kim, Seong-Ju;Park, Seok-Cheon;Kim, Nae-Su;Kim, Tae-Hui
    • The KIPS Transactions:PartC
    • /
    • v.8C no.4
    • /
    • pp.421-428
    • /
    • 2001
  • 위성통신 시스템은 기존의 지상망이나 광 케이블 기술에 비해 통신 대역폭의 유연성과 다중 접속 능력, 이동 통신, 광역성, 멀티포인트 및 브로드캐스팅 등의 고유의 특징으로 인해 초 고속 정보 통신망 구축에 중요한 역할을 할 것이다. 또한 위성통신은 앞으로 도래할 브로드 캐스팅 및 멀티미디어 서비스 등의 통신환경을 지원하며, 지상중계망의 장애 및 트래픽 폭 주시에 대체경로를 제공함으로써 지상망 중심으로 진화·발전되어 온 B-ISDN망과 상호 보 완적인 보완망으로서의 역할을 수행할 것이다. 따라서 지상 B-ISDN과 위성망의 통합은 지 상망의 효율성고 안정성을 향상시킬 수 있을 뿐만 아니라 국가의 모든 통신망을 하나의 정 보 통신망으로 구성하여 국가의 정보를 효율적으로 이용, 관리 및 운용할 수 있기 때문에 위성망과 B-ISDN간의 연동에 대한 연구는 필수적이다. 본 논문에서는 OBP(On-Board Processing) 탑재 위성 B-ISDN 중계망의 호 처리 절차 연구를 수행하는 것으로서, 위성 B-ISDN 구조와 각 지구국별 신호 기능 및 B-ISDN 신호 시스템인 DSS2(Digital Subscriber Signalling No.2) 계층 3 신호 프로토콜, B-ISUP(B-ISDN User Part) 프로토콜, S-BISUP(Satellite BISUP) 프로토콜의 구조를 분석하였다. 또한 점-대-다지점 연결을 위한 B-ISDN의 연결과 소유권 및 각각의 프로토콜에 대한 메시지와 프리미티브를 정의하여, 이 를 토대로 OBP 탑재 위성 B-ISDN 중계망 연동을 위한 기본 호 처리 절차를 설계 및 검증 하고, 이를 구현하였다.

  • PDF

Estimation of the optimal evapotranspiration by using satellite- and reanalysis model-based evapotranspiration estimations (인공위성과 재분석모델 자료의 다중 증발산 자료를 활용하여 최적 증발산 산정 연구)

  • Baik, Jongjin;Jeong, Jaehwan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.273-280
    • /
    • 2018
  • Accurate estimation of evapotranspiration is mightily important for understanding and analyzing the hydrological cycle. There are various methods for estimating evapotranspiration and each method has its own advantages and limitations. Therefore, it is necessary to develop an optimal evapotranspiration product by combing different evapotranspiration products. In this study, we developed an optimal evapotranspiration by fusing two satellite- and model-based evapotranspiration estimates, including revised remote sensing-based Penman-Monteith (RS-PM) and Modified Satellite-Based Priestley-Taylor (MS-PT) methods, Global Land Data Assimilation System (GLDAS), and Global Land Evaporation Amsterdam Model (GLEAM). The statistical analysis (i.e., correlation coefficients, index of agreement, MAE, and RMSE) of combined evapotranspiration product showed to be improved compared to the individual model results. After confirming the overall results, in future studies, advanced data fusion techniques will be used to obtained improved results.

Karyotype Analysis of Eight Korean Native Species in the Genus Iris

  • Kim, Hyun-Hee;Park, Young-Wook;Yoon, Pyung-Sub;Choi, Hae-Woon;Bang, Jae-Wook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.5
    • /
    • pp.401-405
    • /
    • 2004
  • Karyotypes were established in the eight Korean native species of the genus Iris. Chromosome numbers were 2n=50 in I. koreana and 2n=42 in I. uniflora var. carinata and their karyotype formulas were K = 2n = 50 = 14m + 28sm + 8st and K = 2n = 42 = 16m + 26sm, respectively. I. dichotoma and I. pseudoacorus were diploids of 2n=34. However, they showed different karyotype formulas: K = 2n = 34 = 26m + 6sm + 2st in I. dichotoma and K = 2n = 34 = 8m + 24sm + 2st in I. pseudoacorus. I. setosa, and I. pallasii var. chinensis carried the same chromosome numbers of 2n=40, but they showed different patterns of karyotype formula: K = 2n = 40 = 22m + 14sm + 4st in I. setosa and K = 2n = 40 = 26m + 12sm + 2st in I. pallasii var. chinensis. I. sanguinea was a diploid of 2n=28 and the karyotype formula was K = 2n = 28 = 14m + 14sm. I. ensata var. spontanea was a diploid of 2n=24 and the karyotype formula was K = 2n = 24 = 10m + 14sm. Each species showed characteristic chromosome composition with a pair of satellite chromosome except I. koreana with three pairs of satellite chromosomes. The chromosomes of I. dichotoma and I. uniflora were comparatively short, while the chromosomes of I. ensata were remarkably bigger than those of other species. These cytological data will give a useful information for the identification and breeding program of the Iris plants.

Micro-vibration Isolation Performance of X-band Antenna Using Blade Gear (블레이드 기어를 적용한 2축 짐발 구동 안테나의 미소진동 절연성능)

  • Jeon, Su-Hyeon;Kwon, Seong-Cheol;Kim, Tae-Hong;Kim, Yong-Hoon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.313-320
    • /
    • 2015
  • A 2-axis gimbal-type X-band antenna has been widely used to effectively transmit the high resolution image data from the observation satellite to the desired ground station. However, a discontinuous stepper motor activation for rotating the pointing mechanism in azimuth and elevation directions induces undesirable micro-vibration disturbances which can result in the image quality degradation of a high-resolution observation satellite. To enhance the image quality of the observation satellite, attenuating the micro-vibration induced by an activation of the stepper motor for rotational movements of the antenna is important task. In this study, we proposed a low-rotational-stiffness blade gear applied to the output shaft of the stepper motor to obtain the micro-vibration isolation performance. The design of the blade gear was performed through the structure analysis such that this gear is satisfied with the margin of safety rule under the derived torque budget. In addition, the micro-vibration isolation performance of the blade gear was verified through the micro-vibration measurement test using the dedicated micro-vibration measurement device proposed in this study.

VARIABILITY OF THE LATENT HEAT FLUX DURING 1988-2005

  • Iwasaki, Shinsuke;Kubota, Masahisa
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.289-292
    • /
    • 2008
  • Recently, several satellite data analyses projects and numerical weather prediction (NWP) reanalysis projects have produced the ocean surface Latent Heat Flux (LHF) data sets in the global coverage. Comparisons of these LHF data sets showed substantial discrepancies in the LHF values. Recently, the increase of LHF in during 1970s-1990s over the global ocean is shown by the LHF data that have been developed at the Objective Analyzed Air-Sea Fluxes (OAFlux) project. It is interesting to investigate the existence of the increase of LHF over a global ocean in the other LHF products. It is interesting to investigate the existence of the increase of LHF over a global ocean in the other LHF products. In this study, we assessed the consistencies and discrepancies of the inter-annual variability and decadal trend for the period 1988-2005 among six LHF products ((J-OFURO2, HOAPS3, IFREMER, NCEP1,2 and OAFlux) over the global ocean. As results, all LHF products showed a positive trend. In particular, the positive trend in satellite-based data analyses (J-OFURO2, HOAPS3, IFREMER) is larger than that in reanalysis products (NCEP1/2). Also, the consistencies and discrepancies are shown on the spatial patterns of the LHF trends across the six data sets. The positive trend of LHF is remarkable in the regions of western boundary currents such as the Kuroshio and the Gulf Stream in all LHF data sets. But, the discrepancies are shown on the spatial patterns of the LHF trends in tropics and subtropics. These discrepancies are primarily caused by the differences of the input meteorological state variables, particularly for the air specific humidity, used to calculate LHF.

  • PDF

Comparison of the Wind Speed from an Atmospheric Pressure Map (Na Wind) and Satellite Scatterometer­observed Wind Speed (NSCAT) over the East (Japan) Sea

  • Park, Kyung-Ae;Kim, Kyung-Ryul;Kim, Kuh;Chung, Jong-Yul;Conillor, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.173-184
    • /
    • 2003
  • Major differences between wind speeds from atmospheric pressure maps (Na wind) and near­surface wind speeds derived from satellite scatterometer (NSCAT) observations over the East (Japan) Sea have been examined. The root­mean­square errors of Na wind and NSCAT wind speeds collocated with Japanese Meteorological Agency (JMA) buoy winds are about $3.84\;ms^{-1}\;and\;1.53\;ms^{-1}$, respectively. Time series of NSCAT wind speeds showed a high coherency of 0.92 with the real buoy measurements and contained higher spectral energy at low frequencies (>3 days) than the Na wind. The magnitudes of monthly Na winds are lower than NSCAT winds by up to 45%, particularly in September 1996. The spatial structures between the two are mostly coherent on basin­wide large scales; however, significant differences and energy loss are found on a spatial scale of less than 100 km. This was evidenced by the temporal EOFs (Empirical Orthogonal Functions) of the two wind speed data sets and by their two­dimensional spectra. Since the Na wind was based on the atmospheric pressures on the weather map, it overlooked small­scale features of less than 100 km. The center of the cold­air outbreak through Vladivostok, expressed by the Na wind in January 1997, was shifted towards the North Korean coast when compared with that of the NSCAT wind, whereas NSCAT winds revealed its temporal evolution as well as spatial distribution.