• Title/Summary/Keyword: satellite positioning technology

Search Result 223, Processing Time 0.025 seconds

Design of a Jammer Localization System using AOA method (AOA 기법을 이용한 재머 위치추적시스템 설계)

  • Lim, Deok-Won;Choi, Yun-Sub;Lee, Sang-Jeong;Hoe, Moon-Boem;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1241-1249
    • /
    • 2011
  • There are TOA, TDOA and AOA method to estimate the position of the electromagnetic wave transmitter by using the multiple receivers at the fixed position. Among these methods, AOA method is suitable for the jammer localization system. Because TOA method can be adopted for the clocks of the transmitter and the receiver are synchronized each other, and TDOA method can be only adopted for a broad-band jamming signal. This paper, therefore, analyzes the characteristics of the AOA measurements and the sensitivity of the positioning performance according to the system design parameters. Based on the analyzed results, the jammer localization system to meet the desired performance is designed, and it has been checked that the positioning error for the jammer located at a distance of 10km is lower than 38m through the simulation results.

Trend in utilization of Global Navigation Satellite System for diseases and E-health (질병 및 E-health에 대한 위성항법시스템 활용 동향)

  • Tae-Yun Kim;Jung-Min Joo;Jeong-Hyun Hwang;Suk-Seung Hwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.545-554
    • /
    • 2023
  • In modern industry, the Global Navigation Satellite System(GNSS) is utilized in various fields, where PNT information (P: Positioning, N: Navigation, T: Timing) is always provided and the accurate location estimation based on PNT information is required. In particular, in order to prevent the infection and the spread of the COVID-19 pandemic situation that began in 2019, the precise GNSS technology and various supporting techniques have been used, and, with active quarantine and efforts for the infection spread restrain around the world, we are facing the transition to an endemic situation. In fields of disease and E-health, the location information of users is absolutely necessary to track and monitor infectionous diseases and provide remote medical services, and GNSS plays a leading role in providing the accurate location information. This paper presents investigation results on the up-to-date research trends in which GNSS technologies are employed in the field of disease and E-health, and analyzes the results.

Robustness Examination of Tracking Performance in the Presence of Ionospheric Scintillation Using Software GPS/SBAS Receiver

  • Kondo, Shun-Ichiro;Kubo, Nobuaki;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.235-240
    • /
    • 2006
  • Ionospheric scintillation induces a rapid change in the amplitude and phase of radio wave signals. This is due to irregularities of electron density in the F-region of the ionosphere. It reduces the accuracy of both pseudorange and carrier phase measurements in GPS/satellite based Augmentation system (SBAS) receivers, and can cause loss of lock on the satellite signal. Scintillation is not as strong at mid-latitude regions such that positioning is not affected as much. Severe effects of scintillation occur mainly in a band approximately 20 degrees on either side of the magnetic equator and sometimes in the polar and auroral regions. Most scintillation occurs for a few hours after sunset during the peak years of the solar cycle. This paper focuses on estimation of the effects of ionospheric scintillation on GPS and SBAS signals using a software receiver. Software receivers have the advantage of flexibility over conventional receivers in examining performance. PC based receivers are especially effective in studying errors such as multipath and ionospheric scintillation. This is because it is possible to analyze IF signal data stored in host PC by the various processing algorithms. A L1 C/A software GPS receiver was developed consisting of a RF front-end module and a signal processing program on the PC. The RF front-end module consists of a down converter and a general purpose device for acquiring data. The signal processing program written in MATLAB implements signal acquisition, tracking, and pseudorange measurements. The receiver achieves standalone positioning with accuracy between 5 and 10 meters in 2drms. Typical phase locked loop (PLL) designs of GPS/SBAS receivers enable them to handle moderate amounts of scintillation. So the effects of ionospheric scintillation was estimated on the performance of GPS L1 C/A and SBAS receivers in terms of degradation of PLL accuracy considering the effect of various noise sources such as thermal noise jitter, ionospheric phase jitter and dynamic stress error.

  • PDF

A Study on a Project Management Improvement Method for the Development of Next Generation Geostationary Earth Observation Satellite System (차세대 정지궤도 지구관측 위성시스템 개발 사업관리 개선 방안에 관한 연구)

  • Choi, Won Jun;Eun, Jong Won
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.95-100
    • /
    • 2015
  • These days, satellite core technologies are being developed as a way to provide various information by considering simultaneously sending, wide area covering, highly precide, and anti-disaster technologies. Not only global positioning, and image but also space launcher, satellite bus, satellite payload, earth station are being convergently developed in a different technological field. Especially, it is required a lot of initial investing expenditure to provide the Earth observational information service based on the space technologies. Such a trend and change of satellite technologies Korea has realized the necessity for the domestic independent development of next generation earth observation satellites, and are preparing the profound items such as a detailed implementation plan for the efficient development project. Like the satellite advanced countries, it should be transparently carried out that an efficient implementation of the developing target related to the geostationary earth observation satellite development, establishment of technological auditing function and quality assurance system, implementation plan, progressing courses and results of the satellite development program by way of planning, evaluation and management. For these things cited above, it is necessary to operate systematically and continuously the professional structural system by the governmental department in order to control the geostationary earth observation satellite development project. Therefore, this study proposes a development project management improvement method of the Korea next generation geostationary earth observation satellite based on the development project management system of the domestic geostationary satellite system.

Design of a High Dynamic-Range RF ASIC for Anti-jamming GNSS Receiver

  • Kim, Heung-Su;Kim, Byeong-Gyun;Moon, Sung-Wook;Kim, Se-Hwan;Jung, Seung Hwan;Kim, Sang Gyun;Eo, Yun Seong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.115-122
    • /
    • 2015
  • Global Positioning System (GPS) is used in various fields such as communications systems, transportation systems, e-commerce, power plant systems, and up to various military weapons systems recently. However, GPS receiver is vulnerable to jamming signals as the GPS signals come from the satellites located at approximately 20,000 km above the earth. For this reason, various anti-jamming techniques have been developed for military application systems especially and it is also required for commercial application systems nowadays. In this paper, we proposed a dual-channel Global Navigation Satellite System (GNSS) RF ASIC for digital pre-correlation anti-jam technique. It not only covers all GNSS frequency bands, but is integrated low-gain/attenuation mode in low-noise amplifier (LNA) without influencing in/out matching and 14-bit analogdigital converter (ADC) to have a high dynamic range. With the aid of digital processing, jamming to signal ratio is improved to 77 dB from 42 dB with proposed receiver. RF ASIC for anti-jam is fabricated on a 0.18-μm complementary metal-oxide semiconductor (CMOS) technology and consumes 1.16 W with 2.1 V (low-dropout; LDO) power supply. And the performance is evaluated by a kind of test hardware using the designed RF ASIC.

A Study on the Application of U-SAT System for the Indoor Positioning Technology of Ubiquitous Computing (유비쿼터스 컴퓨팅의 실내 측위 기술을 위한 U-SAT 시스템의 적용에 관한 연구)

  • Lee, Dong-Hwal;Park, Jong-Jin;Kim, Su-Yong;Mun, Young-Song;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.876-882
    • /
    • 2006
  • This study presents an ultrasonic location awareness system for the ubiquitous computing with absolute position. The flight time of ultrasonic waves is determined by a period detecting technique which is able to extend the sensing range compared with traditional methods. For location awareness, ultrasonic waves are sent successively from each ultrasonic transmitter and synchronized by radio frequency (RF) signal, where the transmitting part is fixed and the receiving part is movable. To expand the recognizing range, cell matching technique and coded ultrasonic technique are introduced. The experimentation for various distances is accomplished to verify the used period detecting technique of U-SAT system. The positioning accuracy by using cell matching is also verified by finding the locations of settled points and the usability of coded ultrasonic technique is verified. As a result, the possibility of ultrasonic location awareness system for the ubiquitous computing can be discussed as a pseudo-satellite system with low cost, a high update rate, and relatively high precision, in the places where CPS is not available.

A Study of SBAS Position Domain Analysis Method: WAAS and EGNOS Performance Evaluation

  • Kim, Dong-Uk;Han, Deok-Hwa;Kim, Jung-Beom;Kim, Hwi-Gyeom;Kee, Chang-Don;Choi, Kwang-Sik;Choi, Heon-Ho;Lee, Eun-Sung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.203-211
    • /
    • 2016
  • A Satellite Based Augmentation System (SBAS) is a system that provides positioning information with high and accurate reliability to users who require ensuring high safety such as airplane taking off and landing. A continuous performance evaluation on navigation safety facilities shall be performed to determine whether developed systems meet the required performance before and after the operation. In this paper, SBAS position domain analysis is discussed in relation to analysis items for performance evaluation. The performance evaluation on the SBAS in the position domain shall conduct analysis on accuracy, integrity, continuity, and availability, which are items in the required navigation performance (RNP). In the paper, position domain analysis was conducted with regard to the Wide Area Augmentation System (WAAS) in the USA and the European Geostationary Navigation Overlay Service (EGNOS), which were developed already and now under operation. The analysis result showed that each of the systems satisfied the APV-I performance requirements recommended by the International Civil Aviation Organization (ICAO) with regard to daily data. It is necessary to verify using long-term data, whether the performance requirements in the RNP items are satisfied for system certification.

정지궤도 통신위성의 추진시스템 개념설계 연구

  • Park, Eung-Sik;Park, Bong-Kyu;Kim, Jeong-Soo
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.55-64
    • /
    • 2002
  • A conceptual design of propulsion system for a geosynchronous communication satellite with 12 years design life is presented in this paper. Propellant mass budget for the design life is calculated using total velocity increment (ΔV) flowed-down from mission requirement analysis. Sizes of the fuel and oxidizer tank are derived based on the calculated propellant mass budget, and mass of the pressurant as well as the size and pressure of pressurant tank are calculated too. Thruster positioning, number of rocket engines, and position of tank are determined through Trade-Off Study with Structure & Mechanical Subsystem. Propulsion system configuration and its schematics are presented finally.

  • PDF

Regional Optimization of NeQuick G Model for Improved TEC Estimation (NeQuick G의 TEC 예측 개선을 위한 지역 최적화 기법 연구)

  • Jaeryoung Lee;Andrew K. Sun;Heonho Choi; Jiyun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.63-73
    • /
    • 2024
  • NeQuick G is the ionosphere model utilized by Galileo single-frequency users to estimate the ionospheric delay on each user-satellite link. The model is characterized by the effective ionization level (Az) index, determined by a modified dip latitude (MODIP) and broadcast coefficients derived from daily global space weather observations. However, globally fitted Az coefficients may not accurately represent ionosphere within local area. This study introduces a method for regional ionospheric modeling that searches for locally optimized Az coefficients. This approach involves fitting TEC output from NeQuick G to TEC data collected from GNSS stations around Korea under various ionospheric conditions including different seasons and both low and high solar activity phases. The optimized Az coefficients enable calculation of the Az index at any position within a region of interest, accounting for the spatial variability of the Az index in a polynomial function of MODIP. The results reveal reduced TEC estimation errors, particularly during high solar activity, with a maximum reduction in the RMS error by 85.95%. This indicates that the proposed method for NeQuick G can effectively model various ionospheric conditions in local areas, offering potential applications in GNSS performance analyses for local areas by generating various ionospheric scenarios.

Analysis of orbit control for allocation of small SAR satellite constellation (초소형 SAR 위성군의 배치를 위한 궤도 제어 분석)

  • Song, Youngbum;Son, Jihae;Park, Jin-Han;Song, Sung-Chan;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.8-16
    • /
    • 2022
  • This paper presents the orbital control for positioning micro synthetic aperture radar (SAR) satellites for all-weather monitoring around the Korean Peninsula. In Small SAR technology experimental project (S-STEP) developed in Korea, multiple satellites are placed at equal intervals in multiple orbital planes to secure an average revisit period for the region around the Korean Peninsula. Satellites entering the same orbital plane use ion thrusters to control their orbits and the separation velocity from the launch vehicle to distribute them evenly across the orbit. For an orbital that places the satellites equally spaced in the same orbital plane, the shape of the satellite constellation is formed by adjusting the difference in drift rates between the satellites. This paper presents, different types of satellite constellations, and the results of satellite constellation placement according to launch strategies are presented. In addition, a method and limitations in shortening the duration of orbital deployment are presented.