• Title/Summary/Keyword: satellite operation

Search Result 899, Processing Time 0.022 seconds

Installation and Operation of a GPS Jammer Localization System (GPS 전파위협원 위치추적 시스템 구축 및 초기 운용)

  • Lim, Deok Won;Lim, Soon;Chun, Sebum;Heo, Moon Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.524-533
    • /
    • 2015
  • In this paper, results for an installation and operation of a GPS jammer localization system were analyzed. The jammer localization system was developed by Korea Aerospace Research Institute and it consists of 4 Receiver Stations, a Central Tracking Station, and a Monitoring Station. The system was installed at Incheon International Airport in November 2014; each Receiver Stations were installed at rooftop of buildings apart from 4km, and the Central Tracking Station and a Monitoring Station were installed at indoor. Results of the operation can be monitored through web-browser in real-time, Korea Aerospace Research Institute and Incheon International Airport Corporation are continuously monitoring them. So far, there is no jamming signal which affects GPS receivers around the airport, however, some abnormal signals were frequently received at Receiver Stations. Therefore, the characteristics of those signals were also analyzed in this paper.

Evaluating Appropriateness of Medication Use in the Operating Rooms of a Tertiary Hospital: Based on Survey (일개 병원의 수술실 약제관련 업무 적정화 방안연구: 설문조사를 중심으로)

  • Lee, Ye Ji;Jeong, Kyeong Hye;Kim, Young Nam;Kim, Eun Young
    • Korean Journal of Clinical Pharmacy
    • /
    • v.26 no.3
    • /
    • pp.230-237
    • /
    • 2016
  • Background: Since the use of opioid analgesics is frequent in operation rooms (OR), the risk of medication error is high; however the use of medication in the OR has been operating independently with the hospital pharmacy. Therefore, the assessment on management of medication use in operation and the pharmacist's role is needed. Methods: We conducted the literature review and survey from anesthesiologists, operating nurses at Chung-Ang Hospital on management of medication for operation use, awareness on need for medication management efficiency, need for satellite pharmacy in the operating room and its effect. Results: 56% of medical staffs responded that management of medication in the operating room is efficient; however, 82.6% responded that they felt the inconvenience in medication delivery to the OR when additional prescription was ordered. 51.5% also responded that extra time was required for management of narcotics and inventory/record keeping. 80% agreed that there could be lost costs due to prescription missed. Medical staffs responded improving the drug management system could increase the OR efficiency (87%), and eventually bring the increase in hospital revenue (80.4%). Those who responded that implementation of OR satellite pharmacy was needed include physicians (84.6%), nurses (63.6%), and also responded that it'd bring more profit to the hospital by increasing the efficiency in OR (60.9%). Conclusion: For efficient management of medications, implementation of OR satellite pharmacy would lead to improved drug management and increased efficiency in OR and reduced cost and improved patient care.

Dynamic Routing Interworking Method for Integrating Terrestrial Wireless Backbone Network and Satellite Communications System (지상 무선 백본망과 위성 통신망 통합을 위한 동적 라우팅 연동 방안)

  • Choi, Jaewon;Jo, Byung Gak;Kim, Ki Young;Park, KyoungYoul;Lee, Ju Hyung;Han, Joo Hee;Han, Yeesoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.645-653
    • /
    • 2016
  • The terrestrial wireless backbone network and satellite communications system have been independently developed depending on their own purposes and operational concepts, which results in different characteristics in terms of network architecture and routing protocol operation. In this paper, we propose a method for structurally integrating them in consideration of routing mechanism in an autonomous system. Our approach is that the routers of satellite network operate the OSPF in PTP mode on their interfaces connected to the routers of terrestrial wireless backbone network with grid connectivity, whereas the OSPF in satellite network whose topology is of hub-spoke type runs in NBMA mode. We perform some simulations to verify that the satellite communications system can be integrated and interwork with the terrestrial wireless backbone network by our proposed approach. From simulation results, it is also found that the increases of network convergence time and routing overhead are acceptable.

Overview of Thermal Test and Practice in Developing Satellite (인공위성 개발을 위한 유닛 열시험 개요와 실제)

  • Seo, Joung-Ki;Jang, Tae-Seong;Cha, Won-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.915-920
    • /
    • 2013
  • Units developed for a real satellite should pass space environmental tests and launch environment tests. Thermal Vacuum Test, one of the space environmental test, simulates extreme thermal environment encountered in on-orbit operation of satellite. Many payloads which adapt non-traditional, brand-new technology are developed by developers who is not familiar to space engineering field. There might be some possibility of mistakes which result in serious problem due to lack of experience, especially from planning to performing thermal vacuum test. In this paper, brief overview of thermal environmental test related to a satellite development is summarized in order to prepare and perform the thermal test.

Ground Station Design for STSAT-3

  • Kim, Kyung-Hee;Bang, Hyo-Choong;Chae, Jang-Soo;Park, Hong-Young;Lee, Sang-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.283-287
    • /
    • 2011
  • Science and Technology Satellite-3 (STSAT-3) is a 150 kg class micro satellite based with the national space program. The STSAT-3 system consists of a space segment, ground segment, launch service segment, and various external interfaces including additional ground stations to support launch and early operation phases. The major ground segment is the ground station at the Satellite Technology Research Center, Korea Advanced Institute of Science and Technology site. The ground station provides the capability to monitor and control STSAT-3, conduct STSAT-3 mission planning, and receive, process, and distribute STSAT-3 payload data to satisfy the overall missions of STSAT-3. The ground station consists of the mission control element and the data receiving element. This ground station is designed with the concept of low cost and high efficiency. In this paper, the requirements and design of the ground station that has been developed are examined.

Development of Korea Ocean Satellite Center (KOSC): System Design on Reception, Processing and Distribution of Geostationary Ocean Color Imager (GOCI) Data (해양위성센터 구축: 통신해양기상위성 해색센서(GOCI) 자료의 수신, 처리, 배포 시스템 설계)

  • Yang, Chan-Su;Cho, Seong-Ick;Han, Hee-Jeong;Yoon, Sok;Kwak, Ki-Yong;Yhn, Yu-Whan
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.137-144
    • /
    • 2007
  • In KORDI (Korea Ocean Research and Development Institute), the KOSC (Korea Ocean Satellite Center) construction project is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI (Geostationary Ocean Color Imager) instrument which is loaded on COMS (Communication, Ocean and Meteorological Satellite); it will be launched in 2008. Ansan (the headquarter of KORDI) has been selected for the location of KOSC between 5 proposed sites, because it has the best condition to receive radio wave. The data acquisition system is classified into antenna and RF. Antenna is designed to be $\phi$ 9m cassegrain antenna which has 19.35 G/T$(dB/^{\circ}K)$ at 1.67GHz. RF module is divided into LNA (low noise amplifier) and down converter, those are designed to send only horizontal polarization to modem. The existing building is re-designed and arranged for the KOSC operation concept; computing room, board of electricity, data processing room, operation room. Hardware and network facilities have been designed to adapt for efficiency of each functions. The distribution system which is one of the most important systems will be constructed mainly on the internet. and it is also being considered constructing outer data distribution system as a web hosting service for offering received data to user less than an hour.

Design and Operation of LAN Interconnection Service for Satellite Links (위성링크를 위한 LAN 접속 서비스 설계과 운영)

  • Kim, Jeong-Ho;Choe, Gyeong-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.961-968
    • /
    • 1996
  • In the frame of Koreasat Project, it has been identified the task to implement a pilot satellite network module to provide LAN-to-LAn in ground system for satellite links. The pilot network will support an experiment to verify the performances of the considered applications through a satellite.This paper proposes a satellite-LAN interconnecting architecture making full use of satellite benefits and counteracting satellite demerits. The architectureprovides high quality data transmission and high perfrmance for satellite bit errors by using a connection- oriented satellite protocol which can establish multiple logical links between two nodes. As a protocol conversion method, router-type interconnection was selected to guard against problems. Based on this architecture, a satellite LAN interconnecting system has been designed, which includes a 1.8 meter antenna with a 4 watt transceiver, a satellite modem and the developed satellite network interface. The system can support high speed transmission rates of up to 1.544 Mbs and superior network management as well.

  • PDF

Analysis of Satellite Orbit Elements and Study of Constellation Methods for Micro-satellite System Operation (초소형위성체계 운용을 위한 위성궤도요소 분석 및 위성군 배치기법에 대한 고찰)

  • Soung Sub Lee;Jihae Son;Youngbum Song
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • This study analyzes considerations for satellite orbit elements for the national micro-satellite system to effectively perform its mission in accordance with the operational concept, and compares the conventionally used Walker method to improve the performance of the satellite constellation method of the repeating ground track orbit. In satellite orbit element analysis, altitude candidate values of micro-satellite system, use of eccentricity and argument of perigee through frozen orbit, necessity of selection of appropriate orbit inclination, and satellite phasing rules for flying the same repeating ground track orbit are proposed. Based on these analysis results, the superiority of the constellation method of the repeating ground track orbit compared to the Walker method is verified in terms of revisit performance analysis, global coverage characteristics, and orbit consistency.

Study of Impact on COMS Fuel Consumption by East-West Station Keeping Maneuver Time Shift to Avoid Conflict with the Observation of Full Disk or Similar Meteorological Images (전구 및 유사 기상영상 관측임무와 충돌을 회피하기 위한 동서방향 위치유지기동의 시간 이동이 천리안위성 연료소모에 미치는 영향 연구)

  • Cho, Young-Min
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.103-110
    • /
    • 2012
  • In the COMS satellite mission operation, more large meteorological images such as Full Disk(FD) image or 2 adjacent Extended Northern Hemisphere(ENH) images can be taken by the time shift of East West Station Keeping(EWSK) maneuver when the EWSK conflicts with the large images. In this study an analytical approach based on probability of the conflict is proposed for theoretical analysis about the EWSK time shift to avoid the conflict with FD or 2 ENH images. The EWSK time shift has been applied to the COMS operation as a test, too. The theoretical study result and test operation outcome are synthesized to provide the analysis of impact on the COMS fuel consumption by the EWSK time shift. This study is expected to contribute to the maximization of COMS meteorological mission application.

The Ground Checkout Test of OSMI(Ocean Scanning Multispectral Imager) on KOMPSAT-1

  • Yong, Sang-Soon;Shim, Hyung-Sik;Heo, Haeng-Pal;Cho, Young-Min;Oh, Kyoung-Hwan;Woo, Sun-Hee;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.375-380
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the KOMPSAT satellite to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a wisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of<1km over the entire field of view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The instrument also performs sun and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400nm to 900nm using CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands. KOMPSAT satellite with OSMI was integrated and the satellite level environment tests and instrument aliveness/functional test as well, such as launch environment, on-orbit environment (Thermal/vacuum) and EMl/EMC test were performed at KARI. Test results met the requirements and the OSMI data were collected and analyzed during each test phase. The instrument is launched on the KOMPSAT satellite in the late 1999 and the image is scheduled to start collecting ocean color data in the early 2000 upon completion of on-orbit instrument checkout.

  • PDF