• Title/Summary/Keyword: satellite networks

Search Result 318, Processing Time 0.029 seconds

QoS-Oriented Solutions for Satellite Broadcasting Systems

  • Vargas, Aharon;Gerstacker, Wolfgang H.;Breiling, Marco
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.558-567
    • /
    • 2010
  • In this paper, we analyze the capability of satellite broadcasting systems to offer different levels of quality of service (QoS). We focus on the European telecommunications standards institute satellite digital radio and digital video broadcasting satellite handheld (DVB-SH) standards, which have recently been proposed for satellite broadcasting communications. We propose a strategy to provide different levels of QoS for the DVB-SH standard on the basis of an extension of the interleaving scheme, referred to as molded interleaver, which supports low latency service requirements for interactive services. An extensive analysis based on laboratory measurements shows the benefits of this solution. We also present a multilevel coding (MLC) scheme with multistage decoding designed for broadcasting communications as an alternative to the existing standards, where services with different levels of QoS are provided. We present a graphical method based on mutual information for the design and evaluation of MLC systems used for broadcasting communications. Extensive simulations for a typical satellite channel show the viability of the proposed MLC scheme. Finally, we introduce multidimensional constellations in the proposed MLC scheme in order to increase the number of different protection levels.

DEVELOPMENT OF THERMAL ANALYSIS PROGRAM FOR HEAT PIPE INSTALLED PANEL OF GEOSTATIONARY SATELLITE (히트 파이프가 장착된 정지궤도 위성 패널 열해석 프로그램 개발)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young;Chae, Jong-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.416-421
    • /
    • 2010
  • The north and south panel of a geostationary satellite are used for radiator panels to reject internal heat dissipation of electronics units and utilize several heat pipe networks to control the temperatures of units and the satellite within proper ranges. The design of these panels is very important and essential at the conceptual design and preliminary design stage so several thousands of nodes of more are utilized in order to perform thermal analysis of panel. Generating a large number of nodes(meshes) of the panel takes time and is tedious work because the mesh can be easily changed and updated by locations of units and heat pipes. Also the detailed panel model can not be integrated into spacecraft thermal model due to its node size and limitation of commercial satellite thermal analysis program. Thus development of a program was required in order to generate detailed panel model, to perform thermal analysis and to make a reduced panel model for the integration to the satellite thermal model. This paper describes the development and the verification of panel thermal analysis program with ist main modules and its main functions.

  • PDF

Practical Node Deployment Scheme Based on Virtual Force for Wireless Sensor Networks in Complex Environment

  • Lu, Wei;Yang, Yuwang;Zhao, Wei;Wang, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.990-1013
    • /
    • 2015
  • Deploying sensors into a target region is a key issue to be solved in building a wireless sensor network. Various deployment algorithms have been proposed by the researchers, and most of them are evaluated under the ideal conditions. Therefore, they cannot reflect the real environment encountered during the deployment. Moreover, it is almost impossible to evaluate an algorithm through practical deployment. Because the deployment of sensor networks require a lot of nodes, and some deployment areas are dangerous for human. This paper proposes a deployment approach to solve the problems mentioned above. Our approach relies on the satellite images and the Virtual Force Algorithm (VFA). It first extracts the topography and elevation information of the deployment area from the high resolution satellite images, and then deploys nodes on them with an improved VFA. The simulation results show that the coverage rate of our method is approximately 15% higher than that of the classical VFA in complex environment.

Use of unmanned aerial systems for communication and air mobility in Arctic region

  • Gennady V., Chechin;Valentin E., Kolesnichenko;Anton I., Selin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.525-536
    • /
    • 2022
  • The current state of telecommunications infrastructure in the Arctic does not allow providing a wide range of required services for people, businesses and other categories, which necessitates the use of non-traditional approaches to its organization. The paper proposes an innovative approach to building a combined communication network based on tethered high-altitude platform station (HAPS) located at an altitude of 1-7 km and connected via radio channels with terrestrial and satellite communication networks. Network configuration and composition of telecommunication equipment placed on HAPS and located on the terrestrial and satellite segment of the network was justified. The availability of modern equipment and the distributed structure of such an integrated network will allow, unlike existing networks (Iridium, Gonets, etc.), to organize personal mobile communications, data transmission and broadband Internet up to 100 Mbps access for mobile and fixed subscribers, rapid transmission of information from Internet of Things (IoT) sensors and unmanned aerial vehicles (UAV). A substantiation of the possibility of achieving high network capacity in various paths is presented: inter-platform radio links, subscriber radio links, HAPS feeder lines - terrestrial network gateway, HAPS radio links - satellite retransmitter (SR), etc. The economic efficiency of the proposed solution is assessed.

Application of Convolutional Neural Networks (CNN) for Bias Correction of Satellite Precipitation Products (SPPs) in the Amazon River Basin

  • Alena Gonzalez Bevacqua;Xuan-Hien Le;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.159-159
    • /
    • 2023
  • The Amazon River basin is one of the largest basins in the world, and its ecosystem is vital for biodiversity, hydrology, and climate regulation. Thus, understanding the hydrometeorological process is essential to the maintenance of the Amazon River basin. However, it is still tricky to monitor the Amazon River basin because of its size and the low density of the monitoring gauge network. To solve those issues, remote sensing products have been largely used. Yet, those products have some limitations. Therefore, this study aims to do bias corrections to improve the accuracy of Satellite Precipitation Products (SPPs) in the Amazon River basin. We use 331 rainfall stations for the observed data and two daily satellite precipitation gridded datasets (CHIRPS, TRMM). Due to the limitation of the observed data, the period of analysis was set from 1st January 1990 to 31st December 2010. The observed data were interpolated to have the same resolution as the SPPs data using the IDW method. For bias correction, we use convolution neural networks (CNN) combined with an autoencoder architecture (ConvAE). To evaluate the bias correction performance, we used some statistical indicators such as NSE, RMSE, and MAD. Hence, those results can increase the quality of precipitation data in the Amazon River basin, improving its monitoring and management.

  • PDF

Performance Evaluation of Location-Based Inter-Beam Handover Event for Satellite Networks (위성 네트워크를 위한 위치 정보 기반 빔 간 핸드오버 이벤트 성능 분석)

  • Hui-Yeon Jang;Jun-Young Kim;In-Sop Cho;So-Yi Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.483-496
    • /
    • 2024
  • This paper proposes a location-based inter-beam handover event considering terminal mobility to enhance the service quality for terminals in satellite networks. The terminal continuously measures the distance between the serving cell and neighboring cell centers, and checks whether the handover event condition is satisfied, taking into account the terminal's velocity. Performance analysis results demonstrate that the proposed location-based handover event reduces the frequency of unnecessary handover event triggering compared to the conventional received signal strength-based handover event, thereby improving the service continuity of the terminal.

APPLICATION OF NEURAL NETWORK FOR THE CLOUD DETECTION FROM GEOSTATIONARY SATELLITE DATA

  • Ahn, Hyun-Jeong;Ahn, Myung-Hwan;Chung, Chu-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.34-37
    • /
    • 2005
  • An efficient and robust neural network-based scheme is introduced in this paper to perform automatic cloud detection. Unlike many existing cloud detection schemes which use thresholding and statistical methods, we used the artificial neural network methods, the multi-layer perceptrons (MLP) with back-propagation algorithm and radial basis function (RBF) networks for cloud detection from Geostationary satellite images. We have used a simple scene (a mixed scene containing only cloud and clear sky). The main results show that the neural networks are able to handle complex atmospheric and meteorological phenomena. The experimental results show that two methods performed well, obtaining a classification accuracy reaching over 90 percent. Moreover, the RBF model is the most effective method for the cloud classification.

  • PDF

Half-hourly Rainfall Monitoring over the Indochina Area from MTSAT Infrared Measurements: Development of Rain Estimation Algorithm using an Artificial Neural Network

  • Thu, Nguyen Vinh;Sohn, Byung-Ju
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.465-474
    • /
    • 2010
  • Real-time rainfall monitoring is of great practical importance over the highly populated Indochina area, which is prone to natural disasters, in particular in association with rainfall. With the goal of d etermining near real-time half-hourlyrain estimates from satellite, the three-layer, artificial neural networks (ANN) approach was used to train the brightness temperatures at 6.7, 11, and $12-{\mu}m$ channels of the Japanese geostationary satellite MTSAT against passive microwavebased rain rates from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and TRMM Precipitation Radar (PR) data for the June-September 2005 period. The developed model was applied to the MTSAT data for the June-September 2006 period. The results demonstrate that the developed algorithm is comparable to the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) results and can be used for flood monitoring across the Indochina area on a half-hourly time scale.

A Simple Coded ARQ for Satellite Broadcasting

  • Liva, Gianluigi;Kissling, Christian;Hausl, Christoph
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.577-581
    • /
    • 2010
  • We introduce a novel packet retransmission technique which improves the efficiency of automatic retransmission query (ARQ) protocols in the context of satellite broadcast/multicast systems. The proposed coded ARQ technique, similarly to fountain coding, performs transmission of redundant packets, which are made by linear combinations of the packets composing the source block. Differently from fountain codes, the packets for the linear combinations are selected on the basis of the retransmission requests coming from the user terminals. The selection is performed in a way that, at the terminals, the source packets can be recovered iteratively by means of simple back-substitutions. This work aims at providing a simple and efficient alternative to reliable multicast protocols based on erasure correction coding techniques.

Predictive Connection Admission Control for Broadband ATM Satellite Systems

  • Yeong Min Jang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.927-934
    • /
    • 2000
  • In this paper, we propose a predictive(transient) connection admission control(CAC) scheme for satellite systems that supports on-board packet switching of multimedia traffic with predefined quality of service(QoS) requirements. The CAC scheme incorporates the unique characteristics of satellite systems, e.g. large propagation delays, no onboard buffer, and low computational requirement. The CAC scheme requires the estimation of the On-Off traffic characteristics ($\lambda$, $\mu$) of the traffic sources. These estimated values are used to predict the transient cell loss ratio at each downlink. In case the QoS requirements are not met the proposed CAC scheme rejects the new connection. The numerical results obtained suggest that the proposed scheme is an excellent candidate for real time burst and cell level connection prediction and control in broadband on-board satellite networks.

  • PDF