• Title/Summary/Keyword: satellite navigation correction system

Search Result 109, Processing Time 0.027 seconds

Correction Calculation based Pseudorange (의사거리 기반 보정정보 생성)

  • Choi, Jin-Kyu;Park, Sang-Hyun;Cho, Deuk-Jae;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.98-99
    • /
    • 2007
  • It is necessary to use satellite radio navigation system as well as satellite radio navigation augmentation system such as differential Global Positioning System to achieve the positioning accuracy and reliability requested by International Maritime Organization in port and coastal area. Especially, position accuracy of DGPS user is effected by accuracy of pseudorange correction broadcasted from DGPS reference station. This paper shows pseudorange correction calculation algorithm adopting a non-common error estimation filter in order to improve accuracy of pseudorange correction. Finally, this paper verifies that the pseudorange correction calculated by adopting a non-common error estimation filter satisfies performance specifications of RTCM.

  • PDF

Conceptual Design of KASS Uplink Station (한국형 위성항법보강시스템(KASS) 위성통신국 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2017
  • The Satellite Based Augmentation System (SBAS) broadcasts to users integrity and correction information for Global Navigation Satellite System (GNSS) such as GPS and GLONASS using geostationary orbit (GEO) satellites. In accordance with the recommendation of the International Civilian Aeronautical Organization (ICAO) to introduce SBAS until 2025, a Korean SBAS system development / construction project is underway with the Ministry of Land, Transport and Maritime Affairs. Korea Augmentation Satellite System (KASS) is a high precision GPS correction system which is composed of KASS Reference Station (KRS), KASS Processing Station (KPS), KASS Uplink Station (KUS), KASS Control Station (KCS) and GEO satellites. In this paper, we provided the conceptual design of the KASS uplink station, which is composed of the Signal Generator Section (SGS) and the Radio-Frequency Section (RFS), and interface between the KASS ground sector and the GEO satellite.

Application of the Difference Method in a Fault Test on GPS Carrier Phase Measurements (차분 기법을 적용한 GPS 반송파 위상 측정치 고장 검사)

  • Son, Eunseong;Im, Sung-Hyuck;Kim, Koon-Tack
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.601-607
    • /
    • 2017
  • This study performed fault test on global positoining system (GPS) carrier phase measurements, which is a preprocessing step to generate the positioning correction information based on the global navigation satellite system (GNSS) infrastructure. The existing carrier acceleration ramp step test (CARST) method affects the test result by using the mean value to eliminate the receiver clock error. In this regard, this study applied differencing and compared its results with those of the existing CARST. The fault simulation that applied artificial faults to the actual data found that the fault could be detected independently on each satellite when difference method was applied, and the single difference CARST and the double difference CARST produced similar results. The comparison with the existing method using actual data demonstrated the strengths and weaknesses of satellite and station single difference. Nevertheless, it is our understanding that it would require an additional analysis to determine whether the results were affected by the satellite or receiver clock error.

A Study on EUROFIX Reed Solomon Code Design Using Finite Galois Field Fourier Transformation (유한체 푸리에 변환을 이용한 EUROFIX RS Code 설계에 관한 연구)

  • Kim, Min-Jee;Kim, Min-Jung;Chung, Se-Mo;Cho, Hyung-Rae
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • This paper deals with Reed-Solomon Coding for EUROFIX system EUROFIX is an integrated navigation and communication system, which combines Differential GNSS and Loran-C EUROFIX transmits DGNSS(Differential Global Navigation Satellite Systems) (data by pulse position modulation of Loran-C pulses. Loran-C system is regarded as a satellite backup system in recent. And now, it is important to detect and correct much errors in communication systems. Error corrections or correction algorithm is actively studied nowadays because of this. In this paper, we study and design encoder and decoder of Reed Solomon Code using Finite Galois Field Fourier Transformation for error corrections in EUROFIX data transmission. Through extensive simulation, the designed Reed Solomon code is shown to be effective for error correction in EUROFIX data transmission.

A Study on Accuracy Analysis of DGPS-Based Marine Radiobeacon in the East Coast of Korea (한국동해안에서의 Marine Radiobeacon/DGPS 정밀도 분석에 관한 연구)

  • 고광섭;이형욱;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.1
    • /
    • pp.1-13
    • /
    • 1998
  • Radiobeacons that carry corrections for global satellite navigation systems are currently being planned or installed in many countries. In early 1996, it was begun to send DGPS correction message from a marine radiobeacon station located in Changgi Got Lighthouse. It was the first test broadcast of DGPS correction data based on medium frequency of marine radiobeacon where transmission power and rate are 300W and 100bps respectively in Korea. However, there has not been any scientific study on the characteristic of the accuracy of a marine radiobeacon/DGPS. Accordingly, this paper investigates the accuracy of the system, which is currently operating in 310kHz. To do this , the real time differential correction in RTCM data was collected in an implemented system. And then the accuracy was analyzed related to the coverge of the radiobeacon/DGPS. As a result, it is verified that the differential positioning accuracy using the marine radiobeacon is sufficient to ensure the safety of marine activities around the coast of Korea.

  • PDF

GBAS Ground Testing and Performance Analysis at Gimpo International Airport (김포국제공항의 GBAS 지상시험 및 성능 분석)

  • Jeong, Myeong-Sook;Choi, Yunjung;Yun, Youngsun;Bae, Joongwon;Jun, Hyang-Sig;Lee, Young Jae
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.22-32
    • /
    • 2015
  • Ground based augmentation system (GBAS) is a next generation radio navigation aids to support precision approach of aircraft. Recently, airports installing GBAS and providing GBAS service are increasing all over the world. For the first time in Korea, SLS-4000 which is the GBAS ground equipment of Honeywell had been installed at Gimpo International Airport in 2013, and evaluated its functionality and performance of through the ground testing. This paper introduces a ground test and evaluation criteria on the CAT-I GBAS system, and describes testing methods for GBAS ground testing of Gimpo International Airport. In addition, detail testing methods and analysis results on major five of 12 ground test items are described.

Performance Analysis of WADGPS System for Improving Positioning Accuracy

  • So, Hyoungmin;Jang, Jaegyu;Lee, Kihoon;Park, Junpyo;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • The Wide Area Differential Global Positioning System (WADGPS) that uses a number of Global Navigation Satellite System (GNSS) reference stations are implemented with various types and provide services as it can service a wide range of areas relatively. This paper discusses a constellation design of reference stations and performance analysis of the WADGPS. It presented performance results of static and dynamic users when wide area correction algorithm was applied using eight reference stations.

Technology Trends of Satellite Based Augmentation Systems (위성기반 보강항법시스템 기술 동향)

  • Jeongrae Kim;Yongrae Kim;Jongyoon Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.25-34
    • /
    • 2024
  • The Satellite Based Augmentation System (SBAS) improves the accuracy and reliability of user positioning by transmitting the error correction and integrity information of the global navigation satellite system signal from geostationary satellites in real time. For this reason, SBAS was designed for aircraft operations and approach procedures and is now in operational or development stages in many countries. Time has passed since the construction of SBAS and many changes have occurred in the composition of the monitoring stations and the geostationary satellites. These changes have been investigated and the current operation and development status of SBAS globally are surveyed. The development and test schedules for the transition to dual frequency multi-constellation, an important topic in SBAS, are discussed.

Analysis of KASS Flight Test Requirements using The EGNOS (EGNOS 사례를 활용한 KASS 비행시험 요구 사항 분석)

  • Son, Sung-Jin;Hong, Gyo-young;Hong, Woon Ki;Kim, Koon-Tack
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.579-584
    • /
    • 2017
  • SBAS is a satellite based navigation correction system that provides correction information and integrity information of GNSS signal through geostationary satellite based on analysis of GNSS signal in ground station. KASS, a Korean SBAS, is aiming at the APV-1 class SoL service in 2022. Sufficient ground and flight tests must be performed in advance to provide SoL services. However, since KASS, the Korean SBAS, has not yet been added in Korea, specific detailed evaluation items are not presented. EGNOS, which is expected to be the most compatible with KASS and is being serviced after its development, has already been evaluated. In this paper, we analyze the regulations applied to EGNOS construction and analyze the criteria of ground and flight test evaluation items required for flight testing, which is expected to be referenced to the flight inspection process in the future.

Architecture Design for Maritime Centimeter-Level GNSS Augmentation Service and Initial Experimental Results on Testbed Network

  • Kim, Gimin;Jeon, TaeHyeong;Song, Jaeyoung;Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • In this paper, we overview the system development status of the national maritime precise point positioning-real-time kinematic (PPP-RTK) service in Korea, also known as the Precise POsitioning and INTegrity monitoring (POINT) system. The development of the POINT service began in 2020, and the open service is scheduled to start in 2025. The architecture of the POINT system is composed of three provider-side facilities-a reference station, monitoring station, and central control station-and one user-side receiver platform. Here, we propose the detailed functionality of each component considering unidirectional broadcasting of augmentation data. To meet the centimeter-level user positioning accuracy in maritime coverage, new reference stations were installed. Each reference station operates with a dual receiver and dual antenna to reduce the risk of malfunctioning, which can deteriorate the availability of the POINT service. The initial experimental results of a testbed from corrections generated from the testbed network, including newly installed reference stations, are presented. The results show that the horizontal and vertical accuracies satisfy 2.63 cm and 5.77 cm, respectively. For the purpose of (near) real-time broadcasting of POINT correction data, we designed a correction message format including satellite orbit, satellite clock, satellite signal bias, ionospheric delay, tropospheric delay, and coordinate transformation parameters. The (near) real-time experimental setup utilizing (near) real-time processing of testbed network data and the designed message format are proposed for future testing and verification of the system.