In this study, the practicality of unmanned aerial vehicle photography information was identified. Therefore, a total of four consecutive surveys were conducted on the field-level survey areas among the areas subject to photography using unmanned aerial vehicles, and the changes in crop conditions were analyzed using pictures of unmanned aerial vehicles taken during each survey. It is appropriate to collect and utilize photographic information by directly taking pictures of the survey area according to the time of the on-site survey using unmanned aerial vehicles in the field layer, which is an area where many changes in topography, crop vegetation, and crop types are expected. And it turned out that it was appropriate to utilize satellite images in consideration of economic and efficient aspects in relatively unchanged rice paddies and facilities. If the survey area is well equipped with systems for crop cultivation, deep learning can be utilized in real time by utilizing libraries after obtaining photographic data for a certain area using unmanned aircraft in the future. Through this process, it is believed that it can be used to analyze the overall crop and shipment volume by identifying the crop status and surveying the quantity per unit area.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.6
/
pp.1089-1098
/
2020
In this study, we propose a method to detect red tide Cochlodinium Polykrikoide using by machine learning and geostationary marine satellite images. To learn the machine learning model, GOCI Level 2 data were used, and the red tide location data of the National Fisheries Research and Development Institute was used. The machine learning model used logistic regression model, decision tree model, and random forest model. As a result of the performance evaluation, compared to the traditional GOCI image-based red tide detection algorithm without machine learning (Son et al., 2012) (75%), it was confirmed that the accuracy was improved by about 13~22%p (88~98%). In addition, as a result of comparing and analyzing the detection performance between machine learning models, the random forest model (98%) showed the highest detection accuracy.It is believed that this machine learning-based red tide detection algorithm can be used to detect red tide early in the future and track and monitor its movement and spread.
Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.2
/
pp.93-101
/
2021
Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.2
/
pp.319-325
/
2021
A fine dust measurement using drones is becoming an increasingly common technology, and air pollutants can be identified through dust monitoring in partial industrial areas. A station for measuring fine dust provides information at large construction site offices. On the other hand, it was difficult to check the fine dust in the pollutant source accurately. Therefore, the drone took measurements directly after been placed at the site. While measuring fine dust, monitoring noise occurred due to the influence of the drone's down-wind during landing, but the measurements were similar to the numerical value of the grounded pollution source on the height of 30 m. The field applicability to the study area has limitations in periodic updates using satellite images because the terrain was constantly changing due to considerable flattening fieldwork. Therefore, this study implemented a system that can reflect real-time field information through GIS mapping using drones.
The impacts of ice clouds on the energy budget of the Earth and their representation in climate models have been identified as important and unsolved problems. Ice clouds consist almost exclusively of non-spherical ice crystals with various shapes and sizes. To determine the influences of ice clouds on solar and infrared radiation as required for remote sensing retrievals and numerical models, knowledge of scattering and microphysical properties of ice crystals is required. A conventional method for representing the radiative properties of ice clouds in satellite retrieval algorithms and numerical models is to combine measured microphysical properties of ice crystals from field campaigns and pre-calculated single-scattering libraries of different shapes and sizes of ice crystals, which depend heavily on microphysical and scattering properties of ice crystals. However, large discrepancies between theoretical calculations and observations of the radiative properties of ice clouds have been reported. Electron microscopy images of ice crystals grown in laboratories and captured by balloons show varying degrees of complex morphologies in sub-micron (e.g., surface roughness) and super-micron (e.g., inhomogeneous internal and external structures) scales that may cause these discrepancies. In this study, the current idealized models representing morphologies of ice crystals and the corresponding numerical methods (e.g., geometric optics, discrete dipole approximation, T-matrix, etc.) to calculate the single-scattering properties of ice crystals are reviewed. Current problems and difficulties in the calculations of the single-scattering properties of atmospheric ice crystals are addressed in terms of cloud microphysics. Future directions to develop physically consistent ice-crystal models are also discussed.
Choi, Jong-kuk;Noh, Jae Hoon;Brewin, Robert J.W.;Sun, Xuerong;Lee, Charity M.
Korean Journal of Remote Sensing
/
v.36
no.6_1
/
pp.1339-1348
/
2020
Phytoplankton controls marine ecosystems in terms of nutrients, photosynthetic rate, carbon cycle, etc. and the degree of its influence on the marine environment depends on their physical size. Many studies have been attempted to identify marine phytoplankton size classes using the remote sensing techniques. One of successful approach was the three-component model which estimates the chlorophyll concentrations of three phytoplankton size classes (micro-phytoplankton; >20 ㎛, nano-; 2-20 ㎛ and pico-; <2 ㎛) as a function of total chlorophyll. Here, we examined the applicability of Geostationary Ocean Colour Imager (GOCI) to the mapping of the phytoplankton size class distribution in the East Sea. A fit of the three-component model to a biomarker pigment dataset collected in the study area for some years including a large harmful algal bloom period has been carried out to derive size-fractioned chlorophyll concentration (CHL). The tuned three-component model was applied to the hourly GOCI images to identify the fractions of each phytoplankton size class for the entire CHL. Then, we investigated the distribution of phytoplankton community in terms of the size structure in the East Sea during the harmful Cochlodinium polykrikoides blooms in the summer of 2013.
River confluence is often characterized by shear layer and the associated strong mixing. In natural rivers, the main channel and its tributary can be separated by the shear layer using contrasting colors. The shear layer can be easily observed using aerial images from satellite or unmanned aerial vehicles. This study proposes a low-cost identification method extracting geographic features of the shear layer using RGB aerial image. The method consists of three stages. At first, in order to identify the shear layer, it performs image segmentation using a Gaussian mixture model and extracts the water bodies of the main channel and tributary. Next, the self-organizing map simplifies the flow line of the water bodies into the 1-dimensional curve grid. After that, the curvilinear coordinate transformation is performed using the water body pixels and the curve grid. As a result, the shear layer identification method was successfully applied to the confluence between Nakdong River and Nam River to extract geometric shear layer features (confluence angle, upstream- and downstream- channel widths, shear layer length, maximum shear layer thickness).
The reservoir is a major water supply source in the domestic agricultural environment, and the monitoring of water storage of reservoirs is important for the utilization and management of agricultural water resource. Remote sensing via satellite imagery can be an effective method for regular monitoring of widely distributed objects such as reservoirs, and in this study, image classification and image segmentation algorithms are applied to Sentinel-1 Synthetic Aperture Radar (SAR) imagery for water body detection in 53 reservoirs in South Korea. Six algorithms are used: Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), Otsu, Watershed (WS), and Chan-Vese (CV), and the results of water body detection are evaluated with in-situ images taken by drones. The correlations between the in-situ water surface area and detected water surface area from each algorithm are NN 0.9941, SVM 0.9942, RF 0.9940, Otsu 0.9922, WS 0.9709, and CV 0.9736, and the larger the scale of reservoir, the higher the linear correlation was. WS showed low recall due to the undetected water bodies, and NN, SVM, and RF showed low precision due to over-detection. For water body detection through SAR imagery, we found that aquatic plants and artificial structures can be the error factors causing undetection of water body.
In orderto understand the urban thermal conditions, many studies have been conducted to estimate the thermal fluxes. Currently sensible heat fluxes are estimated through various methods, but studies about comparing the differences between each method are very insufficient. Therefore, this study try to estimate the sensible heat flux of the same area by two representative estimation methods and compare their results to confirm the significance and limitation between methods. As a result of the study, the heat balance methods has a great advantage in terms of resolution but it can not consider the anthropogenic heat flux, so sensible heat flux can be underestimated in urban areas. When estimating based on physical equation, anthropogenic heat flux can be considered and the error is relatively small, it has a limitations in time and space resolutons. The two methods showed the largest difference in industiral areas where anthropogenic heat fluxes are high, with an average of 135 W/m2 and a maximum of 400 W/m2. On the other hand, the green and water have a very small difference with and average of 20 W/m2. The results between two methods show significant differences in urban areas, it is necessary to select a suitable method for each research purpose.
Journal of the Korean Society of Marine Environment & Safety
/
v.28
no.7
/
pp.1111-1119
/
2022
Tourism projects through islands in the waters of Sinan-gun became active, and as a result, a total of 13 marine bridges connecting islands were completed. However, the marine bridge constructed in the fairway is dangerous for traffic. Particularly, in the case of the marine bridge connecting two islands, the width of the fairway is extremely narrow, therefore the risk is higher. In this study, we evaluated the risk of collision between marine bridge piers and ships using the IALA Waterway Risk Assessment Program (IWRAP), a risk assessment model for port waterways, based on a maritime traffic survey on the coastal bridge in Sinan-gun. The results, indicated that No.1 Sinan bridge had the highest probability of collision and most of the transit ships were coastal passenger ships. In addition, No.1 Sinan bridge was the place where the most collision accidents occurred among the marine bridge piers in the target sea, and the cause this study was analyzed. An analysis of the satellite images of the sea environment of No.1 Sinan bridge using an image processing method, confirmed that obstacles that could not be seen in the chart existed nearby the bridge. As a result, traffic was observed to be concentrated in one direction, unlike two-way traffic, which is a method of inducing traffic of bridges to avoid obstacles. The risk cause analysis method using the image processing technique of this study is expected to be used as a basic research method for analyzing the risk factors of island bridge in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.