• Title/Summary/Keyword: satellite account

Search Result 142, Processing Time 0.041 seconds

Analysis of the Detection Time of Distress Signal for LEOSAR and MEOSAR Systems (LEOSAR 및 MEOSAR 시스템의 조난신호 탐지시간 해석)

  • Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.377-384
    • /
    • 2006
  • In this paper the detection time of the distress signal for the satellite-based search and rescue (SAR) system is evaluated. Present LEOSAR system in operation employs a few Low-altitude Earth Orbit (LEO) satellites and hence provides poor and local coverage availability. This results in a considerably long waiting time for a distress beacon to be detected by a rescue mission control center. One can expect that the detection time of the distress signal will be significantly reduced if the proposed MEOSAR system, which is based on the Medium-altitude Earth Orbit (MEO) satellites, is implemented. Taking into account the influence of the obstacles on the beacon signal, simulations are carried out to evaluate the detection time of distress signals for the LEOSAR and MEOSAR systems and the corresponding results are analyzed.

  • PDF

A design process of central stations for GNSS based land transportation infrastructure network (육상교통 사용자를 위한 위성항법기반 중앙국 시스템 설계 및 구현)

  • Son, Min-Hyuk;Kim, Gue-Heon;Heo, Moon-Bum
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.374-377
    • /
    • 2012
  • GNSS(Global Navigation Satellite System) based land transportation infrastructure system is consists of receiving station and central station. The functions of the central system include receiving station's data gathering and decoding, carrier correction and integrity information generated, transmission of data in real-time. In general, The central station architecture should take into account various important points relating to hardware/software of system, data archiving and checking, availability and continuity of operation, etc. There is a fundamental need for a generic design capable of being used in any situation. Also, There is need to develop an expandable and interoperable central station architecture. In this paper, the process of design and manufacture and verification will be introduced.

  • PDF

INTRODUCTION OF NUC ALGORITHM IN ON-BOARD RELATIVE RADIOMERIC CALIBRATION OF KOMPSAT-2

  • Song, J.H.;Choi, M.J.;Seo, D.C.;Lee, D.H.;Lim, H.S.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.504-507
    • /
    • 2007
  • The KOMPSAT-2 satellite is a push-broom system with MSC (Multi Spectral Camera) which contains a panchromatic band and four multi-spectral bands covering the spectral range from 450nm to 900nm. The PAN band is composed of six CCD array with 2528 pixels. And the MS band has one CCD array with 3792 pixels. Raw imagery generated from a push-broom sensor contains vertical streaks caused by variability in detector response, variability in lens falloff, pixel area, output amplifiers and especially electrical gain and offset. Relative radiometric calibration is necessary to account for the detector-to-detector non-uniformity in this raw imagery. Non-uniformity correction (NUC) is that the process of performing on-board relative correction of gain and offset for each pixel to improve data compressibility and to reduce banding and streaking from aggregation or re-sampling in the imagery. A relative gain and offset are calculated for each detector using scenes from uniform target area such as a large desert, forest, sea. In the NUC of KOMPSAT-2, The NUC table for each pixel are divided as HF NUC (high frequency NUC) and LF NUC (low frequency NUC) to apply to few restricted facts in the operating system ofKOMPSAT-2. This work presents the algorithm and process of NUC table generation and shows the imagery to compare with and without calibration.

  • PDF

The New Paradigm of Information -intensive Office in the 21st Century -The Role of Expanded Alternative Office- (21c 정보화 사무실의 뉴 패러다임 - 대체 사무실의 확산과 그 역할 -)

  • 임외석
    • KSCI Review
    • /
    • v.6 no.2
    • /
    • pp.20-35
    • /
    • 1999
  • Today, the traditional office system doesn't accomplish the function of office well on account of the change of socioeconomic environments We can expect that aspect will grow from bad to bad in the 21st century. So, I insist that the alternative office is a cure for the problem The alternative office means a new form of offices, e,g. Team office, Hoteling, Small office home office. Satellite office, Cyber office. etc., as a alternative of the traditional office. I believe that alternative offices on the basis of a powerful information technology will perform the function and the role of office efficiently, and then these are fixed on the new paradigm of the information-intensive offices.

  • PDF

Recommendation of Navigation Performance for K-UAM Considering Multipath Error in Urban Environment Operation

  • Sangdo Park;Dongwon Jung;Hyang Sig Jun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.379-389
    • /
    • 2023
  • According to the Korea Urban Air Mobility (K-UAM) Concept of Operation (ConOps), the Global Navigation Satellite System (GNSS) is recommended as the primary navigation system and the performance specification will be implemented considering the standard of Performance Based Navigation (PBN). However, by taking into account the characteristics of an urban environment and the concurrent operations of multiple UAM aircraft, the current PBN standards for civil aviation seem difficult to be directly applied to an UAM aircraft. Therefore, by referring to technical documents published in the literature, this paper examines the feasibility of applying the proposed performance requirements to K-UAM, which follows the recommendation of navigation performance requirements for K-UAM. In accordance with the UAM ConOps, the UAM aircraft is anticipated to maintain low altitude during approach and landing phases. Subsequently, the navigation performance degradation could occur in the urban environment, and the primary degradation factor is identified as multipath error. For this reason, to ensure the safety and reliability of the K-UAM aircraft, it is necessary to analyze the degree of performance degradation related to the urban environment and then propose an alternative aid to enhance the navigation performance. To this end, the aim of this paper is to model the multipath effects of the GNSS in an urban environment and to carry out the simulation studies using the real GNSS datasets. Finally, the initial navigation performance requirement is proposed based on the results of the numerical simulation for the K-UAM.

Space Debris Tracking Coverage Analysis of Spinning Disk for Optical Path Switch of Geochang Laser Tracking System (거창 레이저 추적 시스템의 광 경로 전환을 위한 회전 디스크의 우주쓰레기 레이저 추적 성능 분석)

  • Sung, Ki-Pyoung;Lim, Hyung-Chul;Yu, Sung-Yeol;Choi, Man-Soo;Ryou, Jae-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.391-399
    • /
    • 2020
  • KASI (Korea Astronomy and Space Science Institute) has been developing the multipurpose laser tracking system with three functions of satellite laser tracking, adaptive optics and space debris laser tracking for scientific research and national space missions. The space debris laser tracking system provides the distance to space debris without a laser retro-reflector array by using a high power pulse laser, which employs a spinning disk to change the optical path between the transmit and receive beams. The spinning disk causes the collision band which is unable to reflect the returned signal to a detector and then has an effect on the tracking coverage of space debris. This study proposed the mathematical model for tracking coverage by taking into account the various specifications of spinning disk such as disk size, spinning velocity and collision rate between the disk and hole. In addition, the spinning disk specifications were analyzed in terms of tracking coverage and collision band based on the mathematical model to investigate tracking requirements of the Geochang laser tracking system.

LED lighting control system using the variable FOV according to movements of stage actors based on multi sensor (멀티센서기반 무대배우 이동에 따른 FOV가변형 LED조명 제어 시스템)

  • Koo, EunJa;Cha, Jaesang;Kim, Daeho;Park, Myungsook
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • Recently, an importance of culture industry has been emphasized through an increased income level, spare time and changed values of modern people. And demands of the performance, arts, exhibit are steadily being increased. However the stage equipment depends on foreign manufactures on account of the inactive domestic technical skills. Especially in the lighting direction part, it is essential to control the lighting source and detect the moving line of actors but it generally uses the manual control type and realization of actor's moving line regardless of existing IT-based technologies. Also the system operation of existing sensor-based tracking and detecting technologies depends on the main lighting source of the stage. Therefore, this paper proposed LED lighting control system using the variable FOV and multi sensor-based tracking algorithm, which are possible to efficiently track the stage actors and direct the stage lights. Also we demonstrated the practicality and possibility of realization through the integrated experiment of the proposed system and implementation of the salient hardware, software. Additionally, the usefulness of proposed system was demonstrated using performance simulations and actual measurements of implemented sensor output.

Extraction of Landslide Risk Area using GIS (GIS를 이용한 산사태 위험지역 추출)

  • Park, Jae-Kook;Yang, In-Tae;Park, Hyeong-Geun;Kim, Tai-Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.27-39
    • /
    • 2008
  • Landslides cause enormous economic losses and casualties. Korea has mountainous regions and heavy slopes in most parts of the land and has consistently built new roads and large-scale housing complexes according to its industrial and urban growth. As a result, the damage from landslides becomes greater every year. In summer, landslides frequently occur due to local torrential rains and storms. It is critical to predict the potential areas of landslides in advance and to take preventive measures to minimize consequences and to protect property and human life. The previous study on landslides mostly focused on identifying the causes of landslides in the areas where they occurred, and on analyzing landslide vulnerability around the areas without considering rainfall conditions. Thus there were not enough evaluations of the direct risk of landslides to human life. In this study, potentially risky areas for landslides were identified using the GIS data in order to evaluate direct risk on farmlands, roads, and artificial structures that were closely connected to human life. A map of landslide risk was made taking into account rainfall conditions, and a land use map was also drawn with satellite images and digital maps. Both maps were used to identify potentially risky areas for landslides.

Accuracy Analysis of GNSS-based Public Surveying and Proposal for Work Processes (GNSS관측 공공측량 정확도 분석 및 업무프로세스 제안)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.457-467
    • /
    • 2018
  • Currently, the regulation and rules for public surveying and the UCPs (Unified Control Points) adapts those of the triangulated traverse surveying. In addition, such regulations do not take account of the unique characteristics of GNSS (Global Navigation Satellite System) surveying, thus there are difficulties in field work and data processing afterwards. A detailed procesure of GNSS processing has not yet been described either, and the verification of accuracy does not follow the generic standards. In order to propose an appropriate procedure for field surveys, we processed a short session (30 minutes) based on the scenarios similar to actual situations. The reference network in Seoul was used to process the same data span for 3 days. The temporal variation during the day was evaluated as well. We analyzed the accuracy of the estimated coordinates depending on the parameterization of tropospheric delay, which was compared with the 24-hr static processing results. Estimating the tropospheric delay is advantageous for the accuracy and stability of the coordinates, resulting in about 5 mm and 10 mm of RMSE (Root Mean Squared Error) for horizontal and vertical components, respectively. Based on the test results, we propose a procedure to estimate the daily solution and then combine them to estimate the final solution by applying the minimum constraints (no-net-translation condition). It is necessary to develop a web-based processing system using a high-end softwares. Additionally, it is also required to standardize the ID of the public control points and the UCPs for the automatic GNSS processing.

Playback Downlink and Telecommand Uplink Channel Design for Transportable KOMPSAT Ground Station (이동형 다목적실용위성 소형 관제국의 Playback 하향 링크 및 원격 명령 상향 링크 채널 설계)

  • Ahn, Sang-Il;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.396-405
    • /
    • 2009
  • This paper describes playback downlink and telecommand uplink channel design performed for a transportable small-sized KOMPSAT(Korea Multi-Purpose Satellite) ground station. As a result of downlink channel design, required receiving performance was calculated from the threshold signal-to-noise ratio of playback signal and it was revealed that this performance can be guaranteed in 1.5 m ground station with 6.5 dB/K of G/T. For the uplink channel design, 40 dBW of EIRP was derived from the threshold signal-to-noise ratio of telecommand signal received at on-board receiver. The implemented small-sized ground station based on design was evaluated to be fully acceptable for KOMPSAT TT&C(Telemetry, Tracking and Command) system and playback downlink design without taking account of additional 3 dB system link margin was shown to be effective because it had provided constantly initial channel performance without any remarkable degradation over several years of tests with KOMPSAT and KOMPSAT-2, for both uplink and playback downlink in the elevation angle above $10^{\circ}$.