• Title/Summary/Keyword: sand-gravel bar

Search Result 11, Processing Time 0.045 seconds

An analysis on gravel and sand ofsand-gravel bar in the Duchon stream of Hong-Cheon Region (홍천 두촌천 사력퇴의 역과 모래 분석)

  • Oh, Su Jeong;Cho, Heon;Hwang, Sung-Han;Kim, Man Kyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.109-120
    • /
    • 2014
  • This study is an analysis on gravel and sand of sand-gravel bar that stretches variously in the Duchon stream basin, which is one of Hong-Cheon River(a well-developed sand-gravel bar in upstream river)'s upper stream basin. The purpose of this study was to understand the characteristic of the stream's topographic development that variously occur in the small basin by comparing the differences between the aspects of development and the sediment of sand-gravel bar in each section and by examining the transition of sediments moving from upstream to downstream. Through the analysis on the roundness and flatness of gravel, we observed an irregular trend following the increase in supply of granite gravel and gneiss gravel as we traveled downstream. As for the aspect of change in sand's grain size, the overall ratio of medium-coarse sand was very high, but the results showed no big difference in the change following the inflow of stream from the main stream section to the gneiss and granite zone.

Differences between Sand and Gravel Bars of Streams in Patterns of Vegetation Succession

  • Lee, Chang-Seok;Cho, Yong-Chan;Shin, Hyun-Cheol;Park, Sung-Ae
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • We analyzed the factors driving succession and the structure, and dynamics of vegetation on sand and gravel bars in order to clarify the differences in vegetation succession in rivers with different river bed substrates. Woody plant communities (dominated by Salix), perennial herb communities (dominated by Miscanthus), and annual plant communities (dominated by Persicaria) appeared in that order from upstream to downstream on the sandbar. The results of DCA ordination based on vegetation data reflected a successional trend. This result suggests that sandbars grow in a downstream direction. Various vegetation types different in successional stage, such as grassland, young stands of Korean red pine (Pinus densiflora), two-layered stands of young and mature pines, and mature pine stands also occurred on gravel bars, but the vegetation in earlier successional stage was established upstream, which is the opposite to the direction found on sandbars. Those results demonstrate that the dynamics of the bed load itself could be a factor affecting vegetation succession in rivers. In fact, sands suspended by running water were transported downstream over the vegetated area of sand bar and thereby created new areas of sandbar on the downstream end of the sandbar. Meanwhile, gravel, which is heavy and thereby is shifted by strong water currents, accumulated on the upstream end of the vegetated area, and thus created new areas of gravel bar in that direction. These results showed that allogenic processes drive vegetation succession on sand and gravel bars in streams and rivers.

Spatial Distribution and Dynamics of Vegetation on a Gravel Bar: Case Study in the Bangtae Stream (자갈 하중주에서 식생의 공간 분포 및 동태: 방태천의 사례)

  • Pee, Jung-Hun;Kim, Hye-Soo;Kim, Gyung-Soon;Oh, Woo-Seok;Koo, Bon-Yoel;Lee, Chang-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.215-224
    • /
    • 2013
  • We clarified the background for establishment of vegetation by comparing the spatial distribution maps of vegetation and substrate on a gravel bar in the Bangtae stream located on Inje-gun of Gangwon-do, the central eastern Korea. The total vegetation coverage was higher in the interior and lower in the marginal parts of the gravel bar. Spatial distribution of vegetation on the longitudinal section of the gravel bar tended to be arranged in the order of shrub, subtree, and tree dominated vegetation types from the front (upstream) toward the rear (downstream) parts. Coverage of the herbaceous plants was higher in the central and rear parts and lower in the front and right parts of the gravel bar. Vegetation height was higher in the rear part and became lowered as move toward the front part. Substrate was distributed in the order of boulder, gravel, sand, and boulder from the front toward the rear parts. Ordination of stands based on vegetation data was arranged in the order of annual plant, perennial herb, shrub, and tree dominated vegetation as move from the right to the left parts on the axis I. Species richness was higher in the order of Pinus densiflora community, Phragmites japonica community, Salix gracilistyla community, Fraxinus rhynchophylla community, annual plant dominated vegetation, and Prunus padus for. padus community based on the species rank-abundance curve. The order based on the Shannon's index was some different; diversity of Phragmites japonica community and Salix gracilistyla community, which showed higher dominance degree, were low differently from species richness. In conclusion, it was evaluated that the gravel bar newly established toward the upstream and vegetation dynamics of the gravel bar seemed to follow ecosystem mechanisms of succession. As were shown in the above results, the Bangtae stream corresponded to the upstream and thereby particle size of substrate was big. Therefore, they move by rolling and are accumulated for the upstream. Vegetation types were arranged in the order of woodland, shrub-land and grassland from the rear toward the front parts of the gravel bar and thereby reflected the formation process of the bar. However, the gravel bar is disturbed frequently by not only the running water but also the suspended sand as the dynamic space. Such disturbances cause habitat diversity and consequently led to high biodiversity.

A Sediment Transport of Cape Cod Coast, Massachusetts, USA (미국 매사추세츠주 Cape Cod 해안의 퇴적물 이동)

  • 김동주;은고요나
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.589-594
    • /
    • 1997
  • A total of 24 surface sediment samples collected from coastal region and fronting of sea cliff on Cape Cod In southeastern Massachusetts, were analyzed to Investigate the sediment transport mechanism. According to the result of grainsize analysis, the overall trend of g.k size decreases from the north(Wood End Beach) to the south(Nauset Light Beachy. The coarser materials tend to be deposited at the foreshore than at the backshore. Especially gavel content(%) Is very high in northern beaches. The lavel fraction tended to concentrate at the toe of the beach. In addition to gravel. the beach and nearshore bar also tended to be deposite of very coarse sand and the Inner fraction accumulate in the offshore bar, Grainsize analyses of sediment Indicates that the coarsest sands Including gravel accumulate In the beach and nearshore bar, the finer fraction winnowed out by wave action to be deposited In the offshore bar. The beach and nearshore bar sands and gavel are subsequently transported laterally by the wave-driven longshore drift, and finally they come to rest in the distal end of Provincetown Hook. The faller offshore sands are trnasported laterally to the south by net southward-directed longshore current.

  • PDF

Petrographic Study(ASTM C 295) on the KEDO Concrete Aggregates (콘크리트용 KEDO 골재의 암석기재시험 (ASTM C295))

  • Jeong, Ji-Gon;Kim, Kyung-Su;Lee, Chol-Woo
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.589-599
    • /
    • 2007
  • For the preliminary judgement on the chemical stability of concrete aggregates mixed with cement paste, ASTM C 295 method can be applied prior to the long-term chemical test methods. By using this standard test method, the petrographic study on the appropriateness of natural KEDO aggregates for concrete was carried out. With the natural gravel and sand aggregates, the polarized microscope, stereoscopic microscope, and X-ray diffractometer were used for examination. The result shows the 23% of gravel aggregates and 5.1% of sand aggregates are chemically unstable. To select the favorable KEDO concrete aggregates, it is required to exclude the highly metamorphosed rocks, acidic volcanic rocks, highly foliated rocks, and expansive rocks identified from mortar-bar test. Further chemical test and mortar-bar test method integrated with this study is recommended for the suitability assessment of natural KEDO concrete aggregates.

Architectural Elements of the Fluvial Deposits of Meander Bends in Midstream of the Yeongsan River, Korea

  • Chung, Gong-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Kim, Ju-Yong
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.809-820
    • /
    • 2005
  • The fluvial sequence developed along the channel margin of meander bends in the midstream of the Yeongsan River consists of channel deposits at the bottom and overbank deposits at the top, and shows a fining-upward trend. The fluvial deposits consist of 7 sedimentary facies, and facies association forms 7 architectural elements. The channel deposits formed as channel bar or point bar. The channel bar deposits consisted of architectural element of gravel bedform were formed by channel lag deposits within the channel; whereas, the channel bar deposits consisted of architectural elements of downcurrent-dipping inclined strata sets, cross-stratified and horizontally stratified sets, and horizontally stratified sets were formed by downstream migration of sand wave or downstream transport of sand by traction current in the upper flow regime conditions within the channel. The point bar deposits consist of architectural elements of down current-dipping inclined strata sets, horizontally stratified sets, cross-stratified and horizontally stratified sets, and laterally inclined and horizontally stratified sets. These architectural elements are thought to have been formed by the combined effects of the migration of sand dunes and the formation of horizontal lamination in the upper flow regime plane bed conditions. The overbank deposits consist of the architectural elements of overbank fine and sand sheet and lens. The overbank fines were formed by settling of mud from slackwater during flooding over floodplain whereas the sand sheet and lens were formed by traction of sands introduced episodically fiom channel to the overbank during flooding.

Geomorphological significance and role of the sand bars of major river valleys in the South Korea - case study on the Nakdong river valleys - (한국 하천 모래톱의 지형학적 의미와 효능 - 낙동강 하곡을 사례로 -)

  • OH, Kyung-Seob;YANG, Jae-Hyuk;CHO, Heon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.2
    • /
    • pp.1-14
    • /
    • 2011
  • Remarkable development of sand bars is an important characteristic of fluviatile landform of Korea. Their development owes, in one part, to the supply of abundant sandy materials to river valley floor, originated from the weathering of essentially granitic rocks, distributed almost all over the country. It owes, in other part, to river valley disposition presenting many angular sinuosity guided by fracture grid, impeding regular migration of sandy materials along valley floor. Besides, high amplitude of river discharge fluctuation of the country plays is proved to be favorable hydrological factor for the development of the sand bars. The sand bars play important roles in favor of river hydro-ecological environment. They mitigate the amplitude of discharge fluctuation regime. In flood spell, sand grains in the main channel migrate so as to broden wet section. At the spell of low water level, they newly accumulate as to impede rapid stream discharge. Especially high quantity of reserved water in porous space of sand bar is preciously available both for human livelihood and for ecological environment.

Experimental Study on the Adjustment Processes of Minning Pit in the Dredged Channels (준설하천의 웅덩이 적응에 관한 실험적 연구)

  • Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.657-666
    • /
    • 2010
  • The adjustment processes of mining pits in the disturbed channels by sand or gravel mining were investigated by laboratory experiments in this study. The pit migrated with speed when the river bed was steep. The pit migrated slow and steady when the pit was filling with sand, but the pit migrated with speed after the filling processes was finished. The submerged angle of repose in the pit was nearly constant during the pit was filling. The pit was filled with sand with speed as the channel slope was increased. It took time for the pit to be filled with sand as the pit dimension was increased. This meant that the disturbed channels by sand or gravel mining to adjust the new environment was dependent on the slope of the channels and the dimension of the pits. The dimensionless pit length was short and the dimensionless pit depth was shallow as the time was increased. The dimensionless pit depth was shallow, but the dimensionless pit migration speed was increased as the dimensionless shear velocity and the migration speed of the pit were increased. The dimensionless pit depth was increased with the dimensionless bar migration speed. The shape of the pit was deformed and migrated downstream in accordance with the location and shape of the biased bar front which was developed upstream.

A Study on the Functional Unit Trend of Carbon Dioxide Emission in the Construction Materials between 2000, 2003 and 2005 (건축재료의 이산화탄소 배출원단위 변화추이연구)

  • Lee, KangHee;Lee, HaShik;Yang, JaeHyuk
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.123-129
    • /
    • 2010
  • This study aimed at analyzing the trend of carbon dioxide emission for direct and indirect areas by using inter industry relations table between 2000, 2003 and 2005 in the key building materials and components. Results of this study are as follows; First, the material and components for this study was selected in 20 industries of products such as sand, gravel, cement, concrete articles, rebar, and steel bar. Second, among the 20 selected key building materials, the group with the highest carbon-dioxide emission was shown in ready-mixed concrete, concrete articles, and primary aluminum goods. Third, as a result of analyzing the changes to the units of carbon dioxide emission according to passage of time, the number of items which is changed in such as sustained increase or decrease over time was insignificant in carbon-emission change trend.