• Title/Summary/Keyword: sand-dune plant

Search Result 60, Processing Time 0.023 seconds

Photosynthetic characteristics and chlorophyll of Vitex rotundifolia in coastal sand dune

  • Byoung-Jun Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.103-116
    • /
    • 2023
  • Background: This study analyzed the physiological adaptations of a woody plant, Vitex rotundifolia, in Goraebul coastal sand dunes from May to September 2022. Environmental factors and physiological of plants growing under field and controlled (pot) conditions were compared. Results: Photosynthesis in plants growing in the coastal sand dunes and pots was the highest in June 2022 and July 2022, respectively. Chlorophyll fluorescence indicated the presence of stress in the coastal sand dune environment. The net photosynthesis rate (PN) and Y(II) were highest in June in the coastal sand dune environment and July in the pot environment. In August and September, Y(NPQ) increased in the plants in the coastal sand dune environment, showing their photoprotective mechanism. Chlorophyll a and b contents in the pot plant leaves were higher than those in the coastal sand dune plant leaves; however, chlorophyll-a/b ratio was higher in the coastal sand dune plant leaves than in the pot plant leaves, suggesting a relatively high photosynthetic efficiency. Carotenoid content in the coastal sand dune plant leaves was higher in August and September 2022 than that in the pot plant leaves. Leaf water and soluble carbohydrate contents of the coastal sand dune plant leaves decreased in September 2022, leading to rapid leaf abscission. Diurnal variations in photosynthesis and chlorophyll fluorescence in both environments showed peak activity at 12:00 hour; however, the coastal sand dune plants had lower growth rates and Y(II) than the pot plants. Plants in the coastal sand dunes had higher leaf water and ion contents, indicating that they adapted to water stress through osmotic adjustments. However, plants growing in the coastal sand dunes exhibited reduced photosynthetic activity and accelerated decline due to seasonal temperature decreases. These findings demonstrate the adaptation mechanisms of V. rotundifolia to water stress, poor soils, and high temperature conditions in coastal sand dunes. Conclusions: The observed variations indicate the responses of the V. rotundifolia to environmental stress, and may reveal its survival strategies and adaptation mechanisms to stress. The results provide insights into the ecophysiological characteristics of V. rotundifolia and a basis for the conservation and restoration of damaged coastal sand dunes.

Coastal Dune Vegetation of South Korea

  • Lee, Jeom-Sook;Ihm, Byung-Sun;Cho, Du-Sung;Kim, Jong-Wook
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.135-142
    • /
    • 2007
  • We used the Braun-Blanquet method to study coastal dune vegetation of South Korea. Coastal vegetation was monitored in thirty sites from April 2004 to September 2005. Seventeen plant communities were classified into five groups as follows: A. Two associations of herbaceous sand dune plants in Salsoletea komarovii Ohba, Miyawaki et Tx. 1973 (Calystegia soldanella community, Lathyrus japonicus-Calystegia soldanella community), B. Twelve associations of herbaceous perennial sand dune plants in Glehnietea littoralis Ohba, Miyawaki et Tx. 1973 (Carex pumila community, Elymus mollis community, Vitex rotundifolia-Elymus mollis community, Ixeris repens community, Elymus mollis-Ixeris repens community, Lathyrus japonicus community, Messershmidia sibirica community, Glehnia littoralis community, Carex kobomugi community, Calystegia solda-nella-Carex kobomugi community, Ishaemum anthephoroides community, Zoysia macrostachya community), C. One association of shrubby perennial sand dune plant in Viticetea rotundifoliae Ohba, Miyawaki et Tx. 1973 (Vitex rotundifolia community), D. One association of shrubby perennial sand dune plant in Rosetea multiflorae Ohba, Miyawaki et Tx. 1973 (Rosa rugosa community), E. The naturalized community (Diodia teres community).

Studies on Plant Succession of Sand Bars at the Nagdong River Estuary (낙동강 하구 사주 식생의 변이에 관한 연구 II. 식생형성과 종간상관)

  • 문병태
    • Journal of Plant Biology
    • /
    • v.28 no.3
    • /
    • pp.191-198
    • /
    • 1985
  • The processes of vegetation development and interspecific association were studied as a part of a successional study in the sand bars at the Nadgdong River estuary in Korea. The major pioneer plant species in the sand bars were Salsola komarovi, Carex pumila and Cynodon dactylon. In embryonic sand bars, Namusitdeung and Galmaegideung, the processes of vegetation development after colonization by pioneer species were closely interdependent with the development of the sand dune. The vegetation types of embryonic sand bars were divided into two groups: sand dune plants, and annual and perennial forbs. Those of old sand bars, Baeghapdeung and Ogryudeung, were also divided into tow groups: sand dune plants, and salt marsh plants. The results of interspecific association coincided well with the actual distribution of plant communities in the sand bars. The degree of vegetation development in each sand bar agreed with the order of successional stage observed in this study area.

  • PDF

The classification of biotope type and characteristics of naturalized plant habitat on the coastal sand dune ecosystem

  • Lee, Jeom-Sook;Jeon, Ji-Young;Ihm, Byung-Sun;Myeong, Hyeon-Ho
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.167-175
    • /
    • 2012
  • Coastal sand dune systems are particularly fragile and threaten the environment. However, these systems provide fundamental ecosystem services to the nearby urban areas, acting, for example, as protective buffers against erosion. In this paper, we attempt to classify the biotope types of coastal sand dune ecosystems and select an index for the assessment of the conservation value. The types of biotopes are categorized based on the vegetation map; floras are examined in order to research the effects of hinterlands on coastal sand dunes. In addition, a naturalization rate and an urbanization index for each biotope type in hinterlands are analyzed. In the ecosystem of coastal sand dunes, the urbanization index and naturalization rate shows a higher value in sand dunes with areas of road, residential, and idle land in farm villages, rice fields, and fields. On the contrary, a lower value in the urbanization index and naturalization rate is present when typical biotope types, such as sand dune vegetation and natural Pinus thunbergii forests, are widely distributed. Based on these results, urbanization index and naturalization rate should be used as critical indices for the assessment of the ecosystem of costal sand dunes.

Relationship between the spatial distribution of coastal sand dune plants and edaphic factors in a coastal sand dune system in Korea

  • Hwang, Jeong-sook;Choi, Deok-gyun;Choi, Sung-chul;Park, Han-san;Park, Yong-mok;Bae, Jeong-jin;Choo, Yeon-sik
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • We conducted the study on the relationship between the distribution of coastal sand dune plants and edaphic factors from the shoreline to inland in sand dune ecosystem. The application of TWINSPAN classification based on 10 species, led to the recognition of three vegetative groups (A-C), which associated with their habitats (foredune, hummuck in semistable zone and stable zone). The associations were separated along soil gradient far from the seashore. The relationships between species composition and environmental gradients were explained by canonical correspondence analysis (CCA). Distance from the shoreline was an important indicator to determine soil properties (pH, total ion contents, sand particle sizes, organic matters and nitrogen contents) from the seaward area to inland area and distribution pattern of coastal sand dune plants. Group A is foredune zone, characterized by Calystegia soldanella; group included typical foredune species such as Elymus mollis, Carex kobomugi, Ixeris repens, C. soldanella and Glehnia littoralis. Group B on semi-stabilized zone was characterized by Vitex rotundifolia, a perennial woody shrub. This group was associated the proportion of fine sand size (100 to 250 μm). The results on the proportion of soil particle size showed a transition in sand composition, particularly with respect to the proportion of fine sand size that occurred from the foredune ridge at 32.5 m to the Vitex rotundifolia community at 57.5 m from the shoreline. Group C on stabilized zone was characterized by Zoysia macrostachya, Lathyrus japonicus and Cynodon dactylon and were associated soil organic matter and nitrogen contents. The spatial distribution of plants in the Goraebul coastal sand dune system may result from the interactions between the plant species and environmental heterogeneity.

Soil Factors Affecting the Plant Communities of Wetland on Southwestern coast of Korea (한국 서남해안 습지의 식물 군집에 미치는 토양요인)

  • 임병선;이점숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.321-328
    • /
    • 1998
  • To describe the major environmental factors operating in coastal wetland and to characterize the distribution of the plant species over the wetland in relation to the major environmental gradients, 12 soil physical and chemical properties were determined. The gradient of water and osmotic potential of soil, electrical conductivity, sodium and chloride content and soil texture alsong the three habitat types of salt marshes, salt swamp and sand dune were occurred. The 24 coastal plant communities from principal component analysis (PCA) on the 12 variables were at designated as a gradient for soil texture and water potential related with salinity by Axis I and as a gradient for soil moisture and total nitrogen gradient by Axis II On Axis I were divided into 3 groups (1) 9 salt marsh communities including Salicornia herbacea communities (2) 5 salt swamp communities including Scirpus fluviatilis communities and (3) 10 sand dune communities including Jmperata cylindrica communities on Axis II were divided into 2 groups (1) salt marsh and sand dune communities, and (2) 3 salt swamp communities. The results could account for the zonation of plant communities on coastal wetland observed alsong envionmental gradients.

  • PDF

Symbiotic Properties of Arbuscular Mycorrhizal Fungi and Sand Dune Plants (사구식물(砂丘植物)과 Arbuscular 내생균근(內生菌根) 균(菌)의 공생(共生) 특성(特性))

  • Kim, Jun-Tae;Lee, Ki-Hyeon;Jung, Byung-Chul;Kim, Chong-Kyun
    • The Korean Journal of Mycology
    • /
    • v.21 no.3
    • /
    • pp.235-245
    • /
    • 1993
  • The symbiotic properties of arbuscular mycorrhizal fungi(AMF) such as the absence and/or presence of symbiosis, spore density, and six factors of phycochemical properties of soil were investigated in the rhizosphere of seven sand dune plants and three control plants around Kum river. The infection of AMF was confirmed in all plants. Three genera, nine species of the AMF spores were identified in the sand dune; Ac. scrobiculata, G. aggregatum, G. convolutum, G. diaphanum, G. dimophicum, G. geosporum, G. vesiculiferum, G. tortuosum, S. pachycaulis. All of them were also found in the control, but S. pachycaulis were only separated in the sand dune. In the control, three genera, four species were identified; G. flavisporum, Gi. margarita, Sc. gregaria. Sc. persica. The species specificity was not found between the sand dune plant and AMF. However, the AMF was thought to be correlated with the soil factors. The spore density was stimulated with increase of the organic matter and the nitrogen content, but inhibited with the water content and the phosphorus content. In respect of the seasonal factor, the spore density was increased in the late growth period of plants.

  • PDF

Isolation and Characterization of Bacteria Associated with Two Sand Dune Plant Species, Calystegia soldanella and Elymus mollis

  • Park Myung Soo;Jung Se Ra;Lee Myoung Sook;Kim Kyoung Ok;Do Jin Ok;Lee Kang Hyun;Kim Seung Bum;Bae Kyung Sook
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.219-227
    • /
    • 2005
  • Little is known about the bacterial communities associated with the plants inhabiting sand dune ecosystems. In this study, the bacterial populations associated with two major sand dune plant species, Calystegia soldanella (beach morning glory) and Elymus mollis (wild rye), growing along the costal areas in Tae-An, Chungnam Province, were analyzed using a culture-dependent approach. A total of 212 bacteria were isolated from the root and rhizosphere samples of the two plants, and subjected to further analysis. Based on the analysis of the 16S rDNA sequences, all the bacterial isolates were classified into six major phyla of the domain Bacteria. Significant differences were observed between the two plant species, and also between the rhizospheric and root endophytic communities. The isolates from the rhizosphere of the two plant species were assigned to 27 different established genera, and the root endophytic bacteria were assigned to 21. Members of the phylum Gammaproteobacteria, notably the Pseudomonas species, comprised the majority of both the rhizospheric and endophytic bacteria, followed by members of Bacteroidetes and Firmicutes in the rhizosphere and Alphaproteobacteria and Bacteroidetes in the root. A number of isolates were recognized as potentially novel bacterial taxa. Fifteen out of 27 bacterial genera were commonly found in the rhizosphere of both plants, which was comparable to 3 out of 21 common genera in the root, implying the host specificity for endophytic populations. This study of the diversity of culturable rhizospheric and endophytic bacteria has provided the basis for further investigation aimed at the selection of microbes for the facilitation of plant growth.

Improvement of the geotechnical engineering properties of dune sand using a plant-based biopolymer named serish

  • Shabani, Khosro;Bahmani, Maysam;Fatehi, Hadi;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.535-548
    • /
    • 2022
  • Recently, the construction industry has focused on eco-friendly materials instead of traditional materials due to their harmful effects on the environment. To this end, biopolymers are among proper choices to improve the geotechnical behavior of problematic soils. In the current study, serish biopolymer is introduced as a new binder for the purpose of sand improvement. Serish is a natural polysaccharide extracted from the roots of Eremurus plant, which mainly contains inulins. The effect of serish biopolymer on sand treatment has been investigated through performing unconfined compressive strength (UCS), California bearing ratio (CBR), as well as wind erosion tests. The results demonstrated that serish increased the compressive strength of dune sand in both terms of UCS and CBR. Also, wind erosion resistance of the sand was considerably improved as a result of treatment with serish biopolymer. A microstructural study was also conducted via SEM images; it can be seen that serish coated the sand particles and formed a strong network.

The Restoration Effect of Deltacon Method in Coastal Erosion (Deltacon공법을 통한 해안 침식지의 복구 효과 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Lee, Poong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.35-50
    • /
    • 2017
  • This study is to see the recovery effect of the Deltacon method by investigating the amount of sand deposition, the topographical cross section and the vegetation structure; and to derive the effective recovery method of coastal erosion area. The target areas of this study include Jinri coastal dune, Bajireum coastal dune and Seopori coastal dune in Deokjeok-do Island, Ongjin-gun, Incheon. In order to assess the current status of the coastal erosion area recovery, the soil profile structure map was prepared on the site and then the amount of sand deposition within 1m was calculated indoors. The vegetation recovery status of the costal erosion area was assessed via the analyses of the topographical profile structure and the plant community structure, and we aim to derive the effective recovery plan of the Deltacon method with the results. With the Deltacon method, structures with ductile material, special non-woven fabric bags filled with soil and vegetation can be performed therefore the structuralstability and prevention of sand erosion can be achieved. The amounts of sand deposition of Bajireum coastal dune, Seopori costal dune and Jinri costal dune were calculated $0.98{\sim}2.54m^3$, $1.02{\sim}2.96m^3$, and $0.27{\sim}0.75m^3$, respectively, and it is considered that the costal erosion recovery is actively performed for Bajireum costal dune and Seopori costal dune. The analysis results of vegetation structures by topography show that the installation of the send collecting net in steep areas has been highly effective and the Deltacon-constructed target areas have been restored to vegetation and the costal dune, which is similar to the natural dune. The investigation of the plant community structure in Deokjeok-do Island costal dune, Incheon displayed similar research results of the existing costal dune flora and confirmed the emergence of Lathyrus japonicus, Carex kobomugi, Elymus mollis, Vitex rotundifolia, and Calystegia soldanella and others. In order to carry out further effective recovery with the Deltacon method, improvements to rootage of herbaceous vegetation are needed in areas without foredune herbaceous vegetation, and continuos maintenance & management monitoring of connected windbreak forest to costal dunes are also necessary.