• Title/Summary/Keyword: sand soil

Search Result 1,961, Processing Time 0.027 seconds

The Development of a Biofilter to Reduce Atmospheric Methane Emissions from MSW Landfills

  • Park, Soyoung;K.W. Brown;J.C. Thomas
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.73-76
    • /
    • 2002
  • Biofilter performance to reduce C $H_4$ emissions from MSW landfills was tested under a variety of environmental and design conditions. The optimum soil moisture content for C $H_4$ oxidation in a loamy sand was 13% by weight. The addition of N $O_3$-N did not affect the C $H_4$ oxidation rate. Soil depths of 30cm and 60cm were equally efficient in C $H_4$ oxidation. When the C $H_4$ loading rate was decreased, the percentage of C $H_4$ oxidized increased. The maximum C $H_4$ oxidation rate was 27.2 mol $m^{-2}$ $d^{-1}$ under optimum conditions (loamy sand soil, 13% moisture content, 30cm soil depth, and an loading rate of 32.8 mol $m^{-2}$ $d^{-1}$). Based on the above results, the installation of a properly sized and managed biofilter above a landfill cover should be capable of achieving a major reduction in atmospheric methane emissions from MSW landfills built with RCRA covers.

  • PDF

Tests of the interface between structures and filling soil of mountain area airport

  • Wu, Xueyun;Yang, Jun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.399-415
    • /
    • 2017
  • A series of direct shear tests were conducted to investigate the frictional properties of the interface between structures and the filling soil of Chongqing airport fourth stage expansion project. Two types of structures are investigated, one is low carbon steel and the other is the bedrock sampled from the site. The influence of soil water content, surface roughness and material types of structure were analyzed. The tests show that the interface friction and shear displacement curve has no softening stage and the curve shape is close to the Clough-Duncan hyperbola, while the soil is mainly shear contraction during testing. The interface frictional resistance and normal stress curve meets the Mohr-Coulomb criterion and the derived friction angle and frictional resistance of interface increase as surface roughness increases but is always lower than the internal friction angle and shear strength of soil respectively. When surface roughness is much larger than soil grain size, soil-structure interface is nearly shear surface in soil. In addition to the geometry of structural surface, the material types of structure also affects the performance of soil-structure interface. The wet interface frictional resistance will become lower than the natural one under specific conditions.

A Study on Applicability of Soil Strength for Surface Treatment (표층처리를 위한 현장의 강도적용에 관한 연구)

  • Yang, Tae-Seon;Kim, Byeong-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.45-52
    • /
    • 2005
  • Most marine structures are constructed on very soft soil, soil improvements are needed for the area of road, buildings. In this paper, some considerations of several case studies on soil placement method after geotextile placement, known as surface treatment, are done. Considerations of strength applicability on the advanced construction method of sand and soil placement are proposed in this paper. Typical tensile strength of geotextile used in the surface soil stabilization method is 15t/m, and thickness of sand and soil placement between 1.6m and 3.1m. Undrained shear strength of soft clay layer ranges $0.2{\sim}1.2t/m^2$. In order to minimize the difficulties which include soil disturbance, soft soil gush and overturn of vertical drain installation rig more studies are needed.

  • PDF

Study on the Cultivation of Vitex rotundifolia According to Different Soils and Fertilization Methods (토양과 비배관리에 의한 순비기나무의 재배방법에 관한 연구)

  • Kim, Kae-Hwan;Seo, Byung-Soo;Yoon, Se-Eok;Park, Chong-Min
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.6
    • /
    • pp.544-553
    • /
    • 2007
  • This study is focused on the cultivation of seedlings and cuttings of roundleaf chastetree(Vitex rotundifolia L. f.) according to the sorts of soil and fertilization methods. The results are summarized as follows: When roundleaf chastetree seedlings(aged 1-0) and cuttings(aged 1-0) were cultivated in three different kinds of soil- sand, granite soil, and yellow silt- without any fertilization, 70% of the seedlings survived in sand and granite soil, and 35% did in yellow silt; 90% of the cuttings survived in granite soil and 80% did in sand and yellow silt. The general growth of both seedlings and cuttings was good in granite soil, and sand but relatively inferior in yellow silt. Seedlings showed good stem growth while cuttings had fine root growth. In case of cultivation of seedlings with different kinds and quantities of fertilizer adjusted and with granite soil as basic soil, seedlings and cuttings survived in the experimental section where only the organic fertilizer was used as basic fertilization; in contrast, seedlings grown in the experimental section were all dead where both inorganic and liquefied fertilizer were used. Cuttings showed considerably higher survival rates than seedlings at the experimental fertilization section; particularly, the survival rate of cuttings was twice as much as that of seedlings at the experimental section with low fertilization. This study results revealed that cuttings are desirable than seedlings in general rootage, growth, adaptability to soil, and cuttings have lower demand for soil fertility in time of growing roundleaf chastetree saplings.

Analysis on Wettability of Soil Composed of Sand and Fine-Grained Soil with Hydrophobic Surface (모래와 세립토로 구성된 소수성 흙의 습윤성 분석)

  • Jeong-Jun Park;Kicheol Lee;Seung-Kyong You;Jung-Mann Yun;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.43-49
    • /
    • 2023
  • This study described the test results to evaluate the effect of fines content on the wettability of sandy soil composed of hydrophobic soil particles. Wettability was evaluated using the contact angle obtained from the water drop test results for Jumunjin standard sand and sandy soil containing fines content. The test results showed that the wettability of sandy soil composed of sand and fine-grained soil changed depending on the hydrophobic level and fines content. The influence of fines content on the wettability of sandy soil was analyzed. It was found that 1% and 3% hydrophobic sandy soil with 5% fines content decreased by 94.4% and 32.4%, respectively, compared to the contact angle of standard sand. In addition, the contact angle reduction ratio for sandy soil with a 5% hydrophobic level and a fines content of 5% and 10% were 24.4% and 37.3%, respectively. In other words, the wettability of the soils should be evaluated considering the fines content to predict the behavior of contaminants, because the fines content has a significant impact on the value and increase/decrease ratio of the contact angle of sandy soil

Strength and durability characteristics of biopolymer-treated desert sand

  • Qureshi, Mohsin U.;Chang, Ilhan;Al-Sadarani, Khaloud
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.785-801
    • /
    • 2017
  • Biopolymer treatment of geomaterials to develop sustainable geotechnical systems is an important step towards the reduction of global warming. The cutting edge technology of biopolymer treatment is not only environment friendly but also has widespread application. This paper presents the strength and slake durability characteristics of biopolymer-treated sand sampled from Al-Sharqia Desert in Oman. The specimens were prepared by mixing sand at various proportions by weight of xanthan gum biopolymer. To make a comparison with conventional methods of ground improvement, cement treated sand specimens were also prepared. To demonstrate the effects of wetting and drying, standard slake durability tests were also conducted on the specimens. According to the results of strength tests, xanthan gum treatment increased the unconfined strength of sand, similar to the strengthening effect of mixing cement in sand. The slake durability test results indicated that the resistance of biopolymer-treated sand to disintegration upon interaction with water is stronger than that of cement treated sand. The percentage of xanthan gum to treat sand is proposed as 2-3% for optimal performance in terms of strength and durability. SEM analysis of biopolymer-treated sand specimens also confirms that the sand particles are linked through the biopolymer, which has increased shear resistance and durability. Results of this study imply xanthan gum biopolymer treatment as an eco-friendly technique to improve the mechanical properties of desert sand. However, the strengthening effect due to the biopolymer treatment of sand can be weakened upon interaction with water.

Symbiotic Properties of Arbuscular Mycorrhizal Fungi and Sand Dune Plants (사구식물(砂丘植物)과 Arbuscular 내생균근(內生菌根) 균(菌)의 공생(共生) 특성(特性))

  • Kim, Jun-Tae;Lee, Ki-Hyeon;Jung, Byung-Chul;Kim, Chong-Kyun
    • The Korean Journal of Mycology
    • /
    • v.21 no.3
    • /
    • pp.235-245
    • /
    • 1993
  • The symbiotic properties of arbuscular mycorrhizal fungi(AMF) such as the absence and/or presence of symbiosis, spore density, and six factors of phycochemical properties of soil were investigated in the rhizosphere of seven sand dune plants and three control plants around Kum river. The infection of AMF was confirmed in all plants. Three genera, nine species of the AMF spores were identified in the sand dune; Ac. scrobiculata, G. aggregatum, G. convolutum, G. diaphanum, G. dimophicum, G. geosporum, G. vesiculiferum, G. tortuosum, S. pachycaulis. All of them were also found in the control, but S. pachycaulis were only separated in the sand dune. In the control, three genera, four species were identified; G. flavisporum, Gi. margarita, Sc. gregaria. Sc. persica. The species specificity was not found between the sand dune plant and AMF. However, the AMF was thought to be correlated with the soil factors. The spore density was stimulated with increase of the organic matter and the nitrogen content, but inhibited with the water content and the phosphorus content. In respect of the seasonal factor, the spore density was increased in the late growth period of plants.

  • PDF

Geotechnical Characteristics of Crude Oil-Contaminated Sands (원유(Crude-Oil)로 오염된 사질토외 공학적 특성)

  • Eun Chul Shin;Seung Seo Hong
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • The result of an investigation conducted to study the effect of crude oil contamination on the geotechnical properties of sand is presented. The effect of the degree of oil contamination on compaction charateristics, shear strength, and one-dimensional compression charateristics has been investigated. The test results indicate that the compaction charateristics are somewhat influenced by oil contamination The angle friction of sand (based on total stress basis) decreases due to the presence of oil within the pore spaces in sand. The compression charateristics of sand are significantly influenced by oil contamination. The details of the tests conducted and the results are presented in the paper.

  • PDF

Evaluation of seismic p-yp loops of pile-supported structures installed in saturated sand

  • Yun, Jungwon;Han, Jintae;Kim, Doyoon
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.579-586
    • /
    • 2022
  • Pile-supported structures are installed on saturated sloping grounds, where the ground stiffness may decrease due to liquefaction during earthquakes. Thus, it is important to consider saturated sloping ground and pile interactions. In this study, we conduct a centrifuge test of a pile-supported structure, and analyze the p-yp loops, p-yp loops provide the correlation between the lateral pile deflection (yp) and lateral soil resistance (p). In the dry sand model (UV67), the p-yp loops stiffness increased as ground depth increased, and the p-yp loops stiffness was larger by approximately three times when the pile moved to the upslope direction, compared with when it moved to the downslope direction. In contrast, no significant difference was observed in the stiffness with the ground depth and pile moving direction in the saturated sand model (SV69). Furthermore, we identify the unstable zone based on the result of the lateral soil resistance (p). In the case of the SV69 model, the maximum depth of the unstable zone is five times larger than that of the dry sand model, and it was found that the saturated sand model was affected significantly by kinematic forces due to slope failure.

Ground improvement using geocells to enhance trafficability in desert soils

  • Kumar, Anand;Singh, Akshay P.;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.71-78
    • /
    • 2019
  • Massive investments are going on to promote and build transportation infrastructure all across the globe with the challenges being more than budgetary. Sandy soils which are predominant in coastal and border areas in India have typical characteristics. The shear strength of such soil is very low which makes it difficult for any kind of geotechnical construction and hence soil stabilization needs to be carried out for such soil conditions. The use of geocells is one of the most economical methods of soil improvement which is used to increase strength and stiffness and reduce the liquefaction potential of the soil. The use of geocells in stabilizing desert sand and results from a series of plate load test on unreinforced soil and geocell reinforced homogenous sand beds are presented in the present study. It also compares the field results using various load class vehicles like heavy load military vehicles on geocell reinforced soils with the experimental results and comes out with the fact that the proposed technique increases the strength and stiffness of sandy soil considerably and provides a solution for preventing settlement and subsidence.