• Title/Summary/Keyword: sand soil

Search Result 1,957, Processing Time 0.037 seconds

A report of 24 unrecorded bacterial species in Korea belonging to the Phyla Proteobacteria and Bacteroidetes isolated in 2020

  • Kim, Ju-Young;Yoon, Jung-Hoon;Joh, Kiseong;Seong, Chi-Nam;Kim, Won-Yong;Im, Wan-Taek;Cha, Chang-Jun;Kim, Seung-Bum;Jeon, Che-Ok;Seo, Taegun;Kim, Myung Kyum
    • Journal of Species Research
    • /
    • v.11 no.3
    • /
    • pp.133-142
    • /
    • 2022
  • In 2020, 24 bacterial strains were isolated from algae, kudzu leaf, mud, pine cone, seashore sand, sea water, soil, tidal flat, and wetland from the Republic of Korea. Isolated bacterial strains were identified based on 16S rRNA gene sequences, and those exhibiting at least 98.7% sequence similarity with known bacterial species, but not reported in Korea, were highlighted as unrecorded species. These isolates were allocated to the phyla Bacteroidetes and Proteobacteria as unrecorded species in Korea. The four Bacteroidetes strains were classified into the families Chitinophagaceae, Flavobacteriaceae, and Sphingobacteriaceae (of the orders Chitinophagales, Flavobacteriales, and Sphingobacteriales, respectively). The 20 Proteobacteria strains belonged to the Aeromonadaceae, Marinobacter, Microbulbiferaceae, Enterobacteriaceae, Erwiniaceae, Morganellaceae, Yersiniaceae, Lysobacteraceae, Halomonadaceae, Moraxellaceae, Pseudomonadaceae, Steroidobacteraceae, Xanthomonadaceae, and Myxococcaceae (of the orders Aeromonadales, Alteromonadales, Cellvibrionales, Enterobacterales, Lysobacterales, Oceanospirillales, Pseudomonadales, Steroidobacter, Xanthomonadales, and Myxococcales). This study focused on the description of 24 unreported bacterial species in Korea in the phyla Bacteroidetes and Proteobacteria belonging to six classes.

Rainfall and Inflow Simulation for Rill Erosion of Sand Soil (마사토의 세류침식에 대한 강우와 유입수 모의실험)

  • Sang Jin Son;Sang Deog Park;Seung Sook Shin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.194-194
    • /
    • 2023
  • 세류침식은 급경사 나지사면에서 증가하는 지표흐름에 의해 빈번하게 발생하고, 과도한 토사유출로 인해 홍수 및 토사재해 위험 증가와 수질오염 등의 문제를 야기한다. 본 연구는 개발지역의 마사토를 활용하여 1.2 m × 5.5 m 규모의 3개 중규모 플롯에서 세류발달 특성, 유출 및 토사유출량을 파악하고자 강우와 유입수 모의실험을 수행하였다. 경사 조건 15°와 20°에서 유입수 유무에 따른 4회의 반복실험이 진행되었으며 마사토의 평균입경은 0.89 mm이다. 강우강도 범위는 90~140 mm/hr이며, 유입수 유량은 합리식으로 계산하였으며 100~130 ml/sec이다. 하천 차수분석방법인 Horton방법을 사용하여 세류별 차수를 나누었다. 세류절개는 유입수가 없는 경우 실험 시작 약 1분 후에 발생하였고, 최대 2차수까지 세류가 발달하였으며, 유입수가 있는 경우 약 30초 후 발생하였고, 최대 3차수까지 세류가 발달하였다. 세류발달에 대한 수리학적 특성을 파악하기 위하여 염료 추적방법에 의한 동영상 이미지 분석결과 유속은 0.06~0.43 m/s의 범위를 보였다. 유입수와 강우가 함께 공급되는 경우 강우모의 공급수량에 비해 1.32~1.69배 증가했고, 이에 따라 지표유출수는 1.13~3.93배로 증가폭의 범위가 넓었다. 세류발달에 의한 토사유출량은 유입수 유무에 따라 6.7~32.3배로 증가하였다. 결론적으로 강우와 유입수가 상호작용하는 경우 강우에 의한 박리현상보다 유입수에 의한 측벽붕괴 활동이 활발하게 진행되었고 이는 세류 발달 과정에서 지배적으로 이루어졌기 때문으로 판단된다.

  • PDF

Numerical Analysis of Dynamic Centrifuge Model Tests Using an Effective Stress Model (유효응력모델을 이용한 동적 원심모형실험의 수치해석)

  • Park Sung-Sik;Kim Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • In this study an effective stress numerical procedure is used to assess the results of dynamic centrifuge tests under high effective stress. The centrifuge models consist of loose Nevada sand with an initial vertical effective stress of 380kPa at depth, and they are modeled as a one-dimentional soil column. Liquefaction occurred up to 37m or 22m at depth, and the onset of liquefaction triggering was opposite to the conventional liquefaction evaluation procedure. In other words, liquefaction occurs first at the top and propagates downward as shaking continues. The results observed in centrifuge tests are reasonably predicted by the effective stress model. It is noted that the degree of initial saturation and additional densification at depth arising from the application of the high acceleration field play a key role in capturing the results of dynamic centrifuge tests.

Estimation of Axial toad Capacity for Tapered Piles Using Equivalent Transformation (등가변형을 이용한 테이터 말뚝의 지지력 산정)

  • Jun, Sung-Nam;Seo, Kyung-Bum;Song, Won-Jun;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.57-64
    • /
    • 2009
  • In this study, a method using equivalent transformation for estimation of the axial load capacity of tapered piles is proposed. While preexistent methods for estimating the axial load capacity of tapered piles have been based on the effect of soil state and taper angle, a new design method is proposed considering cone resistance $q_c$ and equivalent transformation in sand. Through tapered pile simplified by using equivalent transformation, a new method fur quick and easy estimation of the axial load capacity of tapered pile is proposed for practical use. In order to verify the proposed method, calibration chamber test and field test were conducted. In calibration chamber test, comparison of estimated axial load capacity with measured one showed that the standard deviation and COV (Coefficient Of Variation) of estimated $Q_t$ is $0.05{\sim}0.121$, $0.04{\sim}0.05$ respectively. For field test, axial load capacity by proposed method shows 2.5% under-estimation in comparison with measured value. As a result, it is found that proposed method produces satisfactory predictions for tapered piles.

Expansion Ratio and Ultimate Load of Pulse-Discharge Bulbed Anchors (펄스방전 그라운드 앵커의 확공특성 및 극한인발력에 관한 연구)

  • Kim, Nak-Kyung;Kim, Sung-Kyu;Joo, Yong-Sun;Seo, Hyo-Kyun;Kim, Sun-Ju
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.5-10
    • /
    • 2009
  • The ground anchor is not usually used in soft clay and loose sand, because the pullout resistance of anchors can not be guaranteed. However, there is a method to increase the capacity of anchors using electric discharge geotechnical technologies, which are also known as pulse discharge and electric-spark technologies. The pulse-discharge anchor has a bulbed (or underreamed) bond length that is expanded by high voltage electrokinetic pulse energy. 24 anchors were installed in the weathered soil and sandy clay at the Geotechnical Experimentation Site at Sungkyunkwan University in Suwon, Korea. In this study, in order to define a relation between expansion rate of the anchor diameter and ultimate load, anchor load tests were carried out in accordance with testing procedures by AASHTO (AASHTO 1990) and FHWA (Weatheb 1998). And then several anchors were exhumed to measure the diameter of the pulse discharge anchors.

Site response analysis using true coupled constitutive models for liquefaction triggering

  • Cristhian C. Mendoza-Bolanos;Andres Salas-Montoya;Oscar H. Moreno-Torres;Arturo I. Villegas-Andrade
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • This study focused on nonlinear effective stress site response analysis using two coupled constitutive models, that is, the DM model (Dafalias and Manzari 2004), which incorporated a simple plasticity sand model accounting for fabric change effects, and the PMDY03 model (Khosravifar et al. 2018), that is, a 3D model for earthquake-induced liquefaction triggering and postliquefaction response. A detailed parametric study was conducted to validate the effectiveness of nonlinear site response analysis and porewater pressure (PWP) generation through a true coupled formulation for assessing the initiation of liquefaction at ground level. The coupled models demonstrated accurate prediction of liquefaction triggering, which was in line with established empirical liquefaction triggering relations in published databases. Several limitations were identified in the evaluation of liquefaction using the cyclic stress method, despite its widespread implementation for calculating liquefaction triggering. Variations in shear stiffness, represented by changes in shear wave velocity (Vs1), exerted the most significant influence on site response. The study further indicated that substantial differences in response spectra between nonlinear total stress and nonlinear effective stress analyses primarily occurred when liquefaction was triggered or on the verge of being triggered, as shown by excess PWP ratios approaching unity. These differences diminished when liquefaction occurred towards the later stages of intense shaking. The soil response was predominantly influenced by the higher stiffness values present prior to liquefaction. A key contribution of this study was to validate the criteria used to assess the triggering of level-ground liquefaction using true coupled effective-stress constitutive models, while also confirming the reliability of numerical approximations including the PDMY03 and DM models. These models effectively captured the principal characteristics of liquefaction observed in field tests and laboratory experiments.

Unidirectional cyclic shearing of sands: Evaluation of three different constitutive models

  • Oscar H. Moreno-Torres;Cristhian Mendoza-Bolanos;Andres Salas-Montoya
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.449-464
    • /
    • 2023
  • Advanced nonlinear effective stress constitutive models are started to be frequently used in one-dimensional (1D) and two-dimensional (2D) site response analysis for assessment of porewater generation and liquefaction potential in soft soil deposits. The emphasis of this research is on the assessment of the implementation of this category of models at the element stage. Initially, the performance of a coupled porewater pressure (PWP) and constitutive models were evaluated employing a catalogue of 40 unidirectional cyclic simple shear tests with a variety of relative densities between 35% and 80% and effective vertical stresses between 40 and 80 kPa. The authors evaluated three coupled constitutive models (PDMY02, PM4SAND and PDMY03) using cyclic direct simple shear tests and for decide input parameters used in the model, procedures are recommended. The ability of the coupled model to capture dilation as strength is valuable because the studied models reasonably capture the cyclic performance noted in the experiments and should be utilized to conduct effective stress-based 1D and 2D site response analysis. Sandy soils may become softer and liquefy during earthquakes as a result of pore-water pressure (PWP) development, which may have an impact on seismic design and site response. The tested constitutive models are mathematically coupled with a cyclic strain-based PWP generation model and can capture small-strain stiffness and large-strain shear strength. Results show that there are minor discrepancies between measured and computed excess PWP ratios, indicating that the tested constitutive models provide reasonable estimations of PWP increase during cyclic shear (ru) and the banana shape is reproduced in a proper way indicating that dilation and shear- strain behavior is well captured by the models.

Evaluation of Ground Compaction Using SASW Testing (SASW 시험을 활용한 지반 현장 다짐도 평가)

  • Gunwoong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • Compaction is performed in civil engineering sites to secure the stability of the ground and prevent settlement. While the process of compaction is crucial, it is also essential to evaluate the degree of compaction after the completion of the process. In domestic sites, the evaluation of compaction is mainly conducted on a small number of spot using point-based tests such as plate load tests and sand cone tests. The methods presented so far allow assessment of surface compaction, but evaluating compaction in deeper layers poses challenges. Moreover, due to the limited coverage of point-based testing, it is difficult to achieve an overall assessment of compaction. As a solution to these issues, the Spectral-Analysis-of-Surface-Waves (SASW) tests were utilized to evaluate compaction. SASW tests offer a broader measurement range compared to point-based tests, and depending on the test setup, this method can provide the stiffness of the ground at greater depths. In this study, SASW tests were conducted in a compacted soil site under different conditions to assess compaction. Additionally, Nuclear Density Gauge tests were conducted concurrently to compare and verify the results of SASW. The research results confirmed the feasibility of evaluating compaction using SASW at the geotechnical site.

Ethnobotanical importance of the endemic taxa in the Egyptian flora

  • Mohamed Mahmoud El-Khalafy;Dalia Abd El-Azeem Ahmed;Kamal Hussein Shaltout;Soliman Abdelfattah Haroun;Yassin Mohamed Al-Sodany
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.146-156
    • /
    • 2023
  • Background: Endemic species are important components in the flora of most world regions. Most of these species have become threatened and exposed to extinction within the last few years. The present study aims to evaluate the ecosystem services offered by the endemic plant taxa in Egypt and the threats that affect them. Twenty-five field visits were conducted during summer 2018 to spring 2022 to several locations all over Egypt. In each location, the main habitats, national distribution, abundance, goods and threats were recorded. Results: Egypt has 41 endemic taxa belonging to 36 genera and 20 families inhabiting 10 main habitats. Rocky surfaces and sandy formations have the highest number of endemic species. The relation between the number of endemic taxa and the abundance categories indicated that 2 taxa are rare (4.9% of the total taxa), while the remaining were very rare (95%). The most represented offered good was the medicinal uses (32 taxa = 78%), while fuel plants were only represented by 2 taxa (2 taxa = 4.9%). Besides, 14 taxa (34.1% of the total studied taxa) have at least 1 environmental service. Soil fertility (7 taxa = 50%) was the most represented, followed by sand accumulations (6 taxa out of 14 taxa = 43%), while shading plant was the least (1 taxon = 7.1%) (Rosa arabica). The most represented threat is over-cutting and over-collecting (38 taxa = 92.7%), while mining and quarrying is the least represented (4 taxa = 9.8%). Conclusions: The potential and actual goods, services and threats of the endemic taxa were assessed as follows; field observation, information collected from local inhabitants and herbalists, and a literature review. The present study recommended planning a strategy about the importance, threats and conservation of endemic taxa in Egypt that would help in the protection and rescue of these plants and increase awareness about the importance of these plants.

Stability Assessment of Tunnel Excavation Face Utilizing Characteristics of Collapse Cases (터널 시공현장 붕괴 사례를 이용한 막장의 안정성 평가 연구)

  • Kim, Mintae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.55-64
    • /
    • 2024
  • While shield tunneling has demonstrated stability in international cases, the new Austrian tunneling method (NATM) encounters challenges in urban environments with shallow cover, weathered ground, and high groundwater levels. This paper introduces two typical collapse scenarios observed in urban areas, specifically within weathered bedrock and uncemented sandy soil layers. The collapses are analyzed using six stability evaluation methods, and the results are synthesized to assess the excavation face stability through a hexagonal diagram. The study finds a consistent agreement between the analysis results of the two collapsed tunnel sites and the evaluation outcomes. The employment of the stability evaluation diagram, a comprehensive method that considers the ground characteristics of the target tunnel, proves crucial for ensuring barrier stability during the tunnel design stage. This method is essential for a holistic evaluation, especially when addressing challenging ground conditions in urban settings.