• Title/Summary/Keyword: sand mining

Search Result 99, Processing Time 0.02 seconds

A Comparison of Corrosion Performance of Zirconium Grain Refined MEZ and AZ91 Alloys

  • Song, Guangling;StJohn, David
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.30-35
    • /
    • 2003
  • In this study, sand cast AZ91E and zirconium grain refined MEZ are representative of two typical groups of magnesium alloys: those containing aluminium and those containing no aluminium but with zirconium as a grain refiner. The corrosion performance of these two alloys was evaluated and compared in 5%wt NaCI solution through measurements of weight loss and polarisation curves and examination of microstructure. Corrosion damage of AZ91E was deeper and more localised than that of MEZ, while MEZ had a lower rate of cathodic hydrogen evolution and a higher rate of anodic dissolution than AZ91E. These differences in behaviour can be related to the differences in microstructure and chemical composition between the two alloys.

Experimental investigation for partial replacement of fine aggregates in concrete with sandstone

  • Chandar, K. Ram;Gayana, B.C.;Sainath, V.
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.243-261
    • /
    • 2016
  • This research study focuses on utilizing sandstone which is overburden waste rock in coal mines to use in concrete as a replacement of fine aggregate. Physical properties of sandstone like water absorption, moisture content, fineness modulus etc., were found to be similar to conventional fine aggregate. Scanning Electron Microscope (SEM) analysis was carried out for analysing elemental composition of sandstone. There was no sulphur content in sandstone which is a good sign to carry the replacement. Fine aggregate was replaced with sandstone at 25%, 50%, 75% and 100% by volume and moulds of concrete cubes and cylinders were prepared. Compressive strength of concrete cubes was tested after 3, 7 and 28 days and split tensile & flexural strength was determined after 28 days. The strength was found to be increasing marginally with increase in sandstone content. Fine aggregate that was replaced by 100% sandstone gave highest strength among all the replacements for the compressive, split tensile and flexural strengths. Though increase in strength was marginal, still sandstone can be an effective replacement for sand in order to save the natural resource and utilize the waste sandstone.

The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.201-214
    • /
    • 2016
  • In this paper, a multilaminate based model have been developed and presented to predict the strain hardening behavior of rock. In this multilaminate model, the stress-strain behavior of a material is obtained by integrating the mechanical response of an infinite number of predefined oriented planes passing through a material point. Essential features such as the variable deformations hypothesis and multilaminate model are discussed. The methodology to be discussed here is modeling of strains on the 13 laminates passing through a point in each loading step. Upon the presented methodology, more attention has been given to hardening in non-linear behaviour of rock in going from the peak to residual strengths. The predictions of the derived stress-strain model are compared to experimental results for marble, sandstone and dense Cambria sand. The comparisons demonstrate the ability of this model to reproduce accurately the mechanical behavior of rocks.

A study on data mining techniques for soil classification methods using cone penetration test results

  • Junghee Park;So-Hyun Cho;Jong-Sub Lee;Hyun-Ki Kim
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.67-80
    • /
    • 2023
  • Due to the nature of the conjunctive Cone Penetration Test(CPT), which does not verify the actual sample directly, geotechnical engineers commonly classify the underground geomaterials using CPT results with the classification diagrams proposed by various researchers. However, such classification diagrams may fail to reflect local geotechnical characteristics, potentially resulting in misclassification that does not align with the actual stratification in regions with strong local features. To address this, this paper presents an objective method for more accurate local CPT soil classification criteria, which utilizes C4.5 decision tree models trained with the CPT results from the clay-dominant southern coast of Korea and the sand-dominant region in South Carolina, USA. The results and analyses demonstrate that the C4.5 algorithm, in conjunction with oversampling, outlier removal, and pruning methods, can enhance and optimize the decision tree-based CPT soil classification model.

1g shaking table tests on residual soils in Malaysia through different model setups

  • Lim, Jun X.;Lee, Min L.;Tanaka, Yasuo
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.547-558
    • /
    • 2018
  • Studies of soil dynamic properties in Malaysia are still very limited. This study aims to investigate the dynamic properties of two selected tropical residual soils (i.e., Sandy Clay and Sandy Silt) and a sand mining trail (Silty Sand) in Peninsular Malaysia using 1g shaking table test. The use of 1g shaking table test for soil dynamic testing is often constrained to large strain level and small confining pressure only. Three new experimental setups, namely large laminar shear box test (LLSBT), small chamber test with positive air pressure (SCT), and small sample test with suction (SSTS) are attempted with the aims of these experimental setups are capable of evaluating the dynamic properties of soils covering a wider range of shear strain and confining pressure. The details of each experimental setup are described explicitly in this paper. Experimental results show that the combined use of the LLSBT and SCT is capable of rendering soil dynamic properties covering a strain range of 0.017%-1.48% under confining pressures of 5-100 kPa. The studied tropical residual soils in Malaysia behaved neither as pure sand nor clay, but show a relatively good agreement with the dynamic properties of residual soils in Singapore. Effects of confining pressure and plasticity index on the studied tropical residual soils are found to be insignificant in this particular study.

Polynomial model controlling the physical properties of a gypsum-sand mixture (GSM)

  • Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.425-436
    • /
    • 2023
  • An effective tool for researching actual problems in geotechnical and mining engineering is to conduct physical modeling tests using similar materials. A reliable geometric scaled model test requires selecting similar materials and conducting tests to determine physical properties such as the mixing ratio of the mixed materials. In this paper, a method is proposed to determine similar materials that can reproduce target properties using a polynomial model based on experimental results on modeling materials using a gypsum-sand mixture (GSM) to simulate rocks. To that end, a database is prepared using the unconfined compressive strength, elastic modulus, and density of 459 GSM samples as output parameters and the weight ratio of the mixing materials as input parameters. Further, a model that can predict the physical properties of the GSM using this database and a polynomial approach is proposed. The performance of the developed method is evaluated by comparing the predicted and observed values; the results demonstrate that the proposed polynomial model can predict the physical properties of the GSM with high accuracy. Sensitivity analysis results indicated that the gypsum-water ratio significantly affects the prediction of the physical properties of the GSM. The proposed polynomial model is used as a powerful tool to simplify the process of determining similar materials for rocks and conduct highly reliable experiments in a physical modeling test.

Migration of fine granular materials into overlying layers using a modified large-scale triaxial system

  • Tan Manh Do;Jan Laue;Hans Mattsson;Qi Jia
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.359-370
    • /
    • 2024
  • The primary goal of this study is to evaluate the migration of fine granular materials into overlying layers under cyclic loading using a modified large-scale triaxial system as a physical model test. Samples prepared for the modified large-scale triaxial system comprised a 60 mm thick gravel layer overlying a 120 mm thick subgrade layer, which could be either tailings or railway sand. A quantitative analysis of the migration of fine granular materials was based on the mass percentage and grain size of migrated materials collected in the gravel. In addition, the cyclic characteristics, i.e., accumulated axial strain and excess pore water pressure, were evaluated. As a result, the total migration rate of the railway sand sample was found to be small. However, the total migration rate of the sample containing tailings in the subgrade layer was much higher than that of the railway sand sample. In addition, the migration analysis revealed that finer tailings particles tended to be migrated into the upper gravel layer easier than coarser tailings particles under cyclic loading. This could be involved in significant increases in excess pore water pressure at the last cycles of the physical model test.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

A Study on the Liquefaction of Saturated Sand Layer under Oscillating Water Pressure (수압변동에 의한 포화 모래층의 액상화 연구)

  • Howoong Shon;Hyun-Chul Lim;Dae-Geun Lee
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.59-65
    • /
    • 2000
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure is studied theoretically and experimentally. By the experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress becomes zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical treatment as for the ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquified layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the water and the air in the layer increases the liquified depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquified depth decrease rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquified depth decrease with the increase of the coefficient.

  • PDF

Application of Remote Sensing and GIS technology for monitoring coastal changes in estuary area of the Red river system, Vietnam

  • Lan, Pham Thi;Son, Tong Si;Gunasekara, Kavinda;Nhan, Nguyen Thi;Hien, La Phu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.529-538
    • /
    • 2013
  • Coastline is the most dynamic part of seascape since its shape is affected by various factors. Coastal zone is an area with immense geological, geomorphological and ecological interest. Monitoring coastal change is very important for safe navigation, coastal resource management. This paper shows a result of monitoring coastal morphological changes using Remote Sensing and GIS. Study was carried out to obtain intensity of erosion, deposition and sand bar movement in the Red River Delta. Satellite images of ALOS/AVNIR-2 and Landsat were used for the monitoring of coastal morphological changes over the period of 1975 to 2009. Band rationing and threshold technique was used for the coastline extraction. Tidal levels at the time of image acquisition varied from -0.89m to 2.87m. Therefore, coastline from another image at a different tidal level in the same year was considered to get the corrected coastline by interpolation technique. A series of points were generated along the coastal line from 1975 image and were established as reference points to see the change in later periods. The changes were measured in Euclidean distances from these reference points. Positive values represented deposition to the sea and negative values are erosion. The result showed that the Red river delta area expanded to the sea 3500m in Red river mouth, and 2873m in Thai Binh river mouth from 1975 to 2009. The erosion process occurred continuously from 1975 up to now with the average magnitude 23.77m/year from 1975 to 1989 and 7.85m/year from 2001 to 2009 in Giao Thuy area. From 1975 to 2009, total 1095.2ha of settlement area was eroded by sea. On the other hand, land expanded to the sea in 4786.24ha of mangrove and 1673.98ha of aquaculture.