• 제목/요약/키워드: sand mat material

검색결과 25건 처리시간 0.02초

실내 및 현장시험에 의한 제강 슬래그의 투수성 고찰 (Considerations of Permeability of Converter Slag by Laboratory and In-situ Tests)

  • 이문수;이광찬
    • 한국농공학회지
    • /
    • 제43권5호
    • /
    • pp.93-105
    • /
    • 2001
  • The permeability of converter slag, replacing material of sand mat on improving soft clay foundation, was evaluated in the laboratory as well as in situ test. Effects of grain size, flow water time and aging were investigated using sea and fresh water Converter slag which has a grain size less than 10mm were submerged with fresh water and sea water. In fresh water, the coefficients of permeability in samples A and B were measured as 4.50${\times}$10$^{-2}$ cm per second and 1.20${\times}$10$^{-1}$ cm per second, respectively while as 1.88$\times$10$^{-2}$ cm per second and 3.86$\times$10$^{-1}$ cm per second in sea water. The condition of turbulent flow may exit and was experimentally certified based on the relationship of hydraulic gradient and seepage velocity. After 180 days in using sea water, the coefficients of permeability of samples A and B decreased ten times smaller than those initial values, and after that time continually decreased as for till 360 days. Finally, filling with voids in high-calcium quicklime(CaO) may result in the reduction of coefficient of permeability. In-situ coefficient of permeability however was Practically satisfactory.

  • PDF

표층보강 초연약지반 거동의 예측 방법 개발 (Development of Prediction Method for Behavior of Reinforced Very Soft Clay)

  • 이종선;이철호;유승경;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.482-491
    • /
    • 2009
  • In this study, the mechanical behavior of very soft ground that is reinforced on the surface has been investigated with the aid of a series of numerical analyses. Key material properties of each dredged soft ground, reinforcement and backfill sand mat have been parametrically estimated in the numerical analysis. Along with the result of the study previously performed, a series of in-situ loading conditions and settlement exerted by surface reinforcing operation by construction vehicles has been numerically simulated. These result have been used to evaluate the limit bearing capacity for the unreinforced and reinforced soft ground. Also, the results of the numerical analysis obtained in this research were compared with Yamanouchi's empirical correlation for the limit bearing capacity. Engineering charts listed in this paper for estimating the limit bearing capacity provide field engineers with preliminary design tool for surface reinforcement of very soft ground.

  • PDF

바이오폴리머 혼합토와 결합된 식생매트의 한계 소류력 평가 (Evaluation of critical tractive forces of vegetation mats enhanced with biopolymer mixed soil)

  • 이두한;김명환
    • 한국수자원학회논문집
    • /
    • 제53권3호
    • /
    • pp.167-179
    • /
    • 2020
  • 최근 바이오폴리머 소재를 이용하여 자연 흙의 강도와 식생의 생장을 증진하는 새로운 제방 소재가 개발되었다. 본 연구에서는 바이오폴리머 혼합토를 친환경 제방 재료로 활용하기 위해 혼합토로 조성된 식생 매트의 한계 소류력을 평가하였다. 혼합토는 베타글루칸을 주재료로 모래와 황토를 혼합하여 조성하였다. 실규모 시험체를 제작하여 혼합토를 3 cm 도포하였으며 식생과 매트를 이용하여 4개의 시험체를 제작하였다. 실규모 실험에 의해 손상과 토양유실을 관측하여 한계 소류력을 결정하였다. 식생 호안의 특성상 식생의 피복도에 따라 영향을 받기는 하지만 식생이 활착된 경우 개략적으로 한계소류력 42 N/㎡, 한계유속 4 m/sec을 실험을 통해 확인하였다. 또한 매트공법이 적용된 경우에는 뿌리와 매트의 결합으로 침식저항성이 강화됨을 확인하였다.

재활용을 위한 전로슬래그의 투수성 고찰 (I) (Considerations of Permeability of Converter Slag for Recycling)

  • 이광찬;이문수
    • 한국지반공학회논문집
    • /
    • 제15권4호
    • /
    • pp.69-83
    • /
    • 1999
  • 연약지반 개량시 사용되고 있는 샌드매트용 모래의 대체 재료로서 이용 가능성 여부를 전로 슬래그를 대상으로 담수와 해수를 사용하여 입경별, 시간 경과별, 에이징 처리 후 투수계수 변화를 실내시험을 통해 파악하였다. 담수 사용시, 10 mm 미만의 입경을 갖는 A시료와 B시료의 투수계수는 각각 $6.52\times10_{-2}cm/sec,\; 5.99\times10^{-1}cm/sec$으로 측정되는 반면에 해수를 사용할 경우에는 각각 $1.88\times10_{-2}cm/sec,w;3.86\times10^{-1}cm/sec$로 감소하였으며 또한 동수경사와 침투유속의 관계에서 난류흐름이 지배한 것으로 나타났다. 특히, 해수 사용시 100일 동안의 시간경과에 따른 A시료와 B시료의 투수계수는 초기 값보다 1/10배로 감소하는 경향을 보이는데 이는 유리 석회(CaO)에 의한 간극의 막힘 영향으로 확인되었다.

  • PDF

배수개선공법개발에 관한 연구(I) -각종 지하배수용 암거재료의 배수성능- (Drainage Performance of Various Subsurface Drain Materials-)

  • 김철회;이근후;유시조;서원명
    • 한국농공학회지
    • /
    • 제21권3호
    • /
    • pp.104-120
    • /
    • 1979
  • I. Title of the Study Studies on the Development of Improved Subsurface Drainage Methods. -Drainage Performance of Various Subsurface Drain Materials- II. Object of the Study Studies were carried out to select the drain material having the highest performance of drainage; And to develop the water budget model which is necessary for the planning of the drainage project and the establishment of water management standards in the water-logged paddy field. III. Content and Scope of the Study 1. The experiment was carried out in the laboratory by using a sand tank model. The drainage performance of various drain materials was compared evaluated. 2. A water budget model was established. Various parameters necessary for the model were investigated by analyzing existing data and measured data from the experimental field. The adaptability of the model was evaluated by comparing the estimated values to the field data. IV. Results and Recommendations 1. A corrugated tube enveloped with gravel or mat showed the highest drainage performance among the eight materials submmitted for the experiment. 2. The drainage performance of the long cement tile(50 cm long) was higher than that of the short cement tile(25 cm long). 3. Rice bran was superior to gravel in its' drain performance. 4. No difference was shown between a grave envelope and a P.V.C. wool mat in their performance of drainage. Continues investigation is needed to clarify the envelope performance. 5. All the results described above were obtained from the laboratory tests. A field test is recommended to confirm the results obtained. 6. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as follows; $$D=\Sigma\limit_{t=1}^{n}(Et-R_{\ell}-I+W_d)..........(17)$$ 7. Among the various empirical formulae for potential evapotranspiration, Penman's formular was best fit to the data observed with the evaporation pans in Jinju area. High degree of positive correlation between Penman;s predicted data and observed data was confirmed. The regression equation was Y=1.4X-22.86, where Y represents evaporation rate from small pan, in mm/100 days, and X represents potential evapotranspiration rate estimated by Penman's formular. The coefficient of correlation was r=0.94.** 8. To estimate evapotranspiration in the field, the consumptive use coefficient, Kc, was introduced. Kc was defined by the function of the characteristics of the crop soil as follows; $Kc=Kco{\cdot}Ka+Ks..........(20)$ where, Kco, Ka ans Ks represents the crop coefficient, the soil moisture coefficient, and the correction coefficient, respectively. The value of Kco and Ka was obtained from the Fig.16 and the Fig.17, respectively. And, if $Kco{\cdot}Ka{\geq}1.0,$ then Ks=0, otherwise, Ks value was estimated by using the relation; $Ks=1-Kco{\cdot}Ka$. 9. Into type formular, $r_t=\frac{R_{24}}{24}(\frac{b}{\sqrt{t}+a})$, was the best fit one to estimate the probable rainfall intensity when daily rainfall and rainfall durations are given as input data, The coefficient a and b are shown on the Table 16. 10. Japanese type formular, $I_t=\frac{b}{\sqrt{t}+a}$, was the best fit one to estimate the probable rainfall intensity when the rainfall duration only was given. The coefficient a and b are shown on the Table 17. 11. Effective rainfall, Re, was estimated by using following relationships; Re=D, if $R-D\geq}0$, otherwise, Re=R. 12. The difference of rainfall amount from soil moisture depletion was considered as the amount of drainage required. In this case, when Wd=O, Equation 24 was used, otherwise two to three days of lag time was considered and correction was made by use of storage coefficient. 13. To evaluate the model, measured data and estimated data was compared, and relative error was computed. 5.5 percent The relative error was 5.5 percent. 14. By considering the water budget in Jinju area, it was shown that the evaporation amount was greater than the rainfall during period of October to March in next year. This was the behind reasonning that the improvement of surface drainage system is needed in Jinju area.

  • PDF