• 제목/요약/키워드: sand fabric

검색결과 25건 처리시간 0.023초

기상재해 대응 긴급보수용 패브릭 콘크리트 혼합물의 역학적 특성 및 내구성능 평가 (Evaluation of Mechanical Properties and Durability of Fabric Concrete Binder for Emergency Repair)

  • 전상민;조성문;오리온;김황희;차상선;박찬기
    • 한국농공학회논문집
    • /
    • 제62권4호
    • /
    • pp.23-31
    • /
    • 2020
  • Recently, meteorological disasters have been increasing by climate change, excessive rainfall, and landslide. The purpose is to develop new fabric concrete that can prevent and recover from damages because some of areas are vulnerable to meteorological disaster. Specifically, this technology can minimize time and space constraint when repairing the concrete structure and installing a formwork. The structure of fabric concrete is a mixture of fabric concrete and a high-speed hardened cement, Silica sand, wollastonite mineral fiber, fabric material and waterproof PVC fabric. In this study, the ratio of mechanical properties and durability of the fabric concrete mixture was evaluated by deriving the binder: silica sand mix ratio of the fabric concrete mixture and substituting part of the cement amount with wollastonite mineral fiber. Best binder in performance evaluation: Silica sand mix ratio is 6: 4 and the target mechanical performance and durability are the best when over 15% wollastonite binder is replaced by silicate mineral fiber.

완속여과 공정에서 전처리 공정 도입에 따른 입자제거 효율평가 (Evaluation of particulate removal in slow sand filtration processes)

  • 김성수;배철호;박노석;강석형
    • 상하수도학회지
    • /
    • 제22권4호
    • /
    • pp.461-466
    • /
    • 2008
  • Because of their simplicity, efficiency, and economy, slow sand filters are appropriate means of water treatment for small water systems. In this study, the effect of filtration velocity and dirty skin (Schmutzdecke) was evaluated on the performance of turbidity removal. Also, removal characteristics of particulate were investigated in the case of the usage of non-woven fabric on the surface of sand and the application of PCF as pretreatment process. Comparative column tests were carried out for the various operation condition. From the result of column tests, filtration velocity had little effect on the turbidity removal rate. The formation of algal biofilm on the surface of media is helpful in turbidity removal, while non-woven fabric is not as effective as expected. The relative contribution of biomass and accumulated particulates to head loss development in slow sand filters requires further study.

점토 함유량에 따른 점토질 모래의 투수 및 압밀 특성 평가 (Permeability and Consolidation Characteristics of Clayey Sand Soils)

  • 김광균;박두희;유진권;이장근
    • 한국지반공학회논문집
    • /
    • 제29권3호
    • /
    • pp.61-70
    • /
    • 2013
  • 모래에 혼합된 점토의 혼합비에 의한 투수계수와 압밀계수의 영향분석을 위해 주문진 표준사와 오타와 모래에 카올린 점토를 다양한 혼합비로 섞은 시료를 제작하여 연성벽체투수시험을 실시하였다. 시험결과 시험이 실시된 10%에서 29%의 카올린 점토 혼합범위에서는 세미 로그 그래프 상에서 점토의 혼합비와 투수계수 및 압밀계수가 "반비례하는 선형적 상관관계를 나타내었다. 또한 투수계수와 압밀계수는 흙의 구조에 의해서 결정되는 것으로 나타났다. 점토비가 낮아 안정구조로 볼 수 있는 혼합토에서는 점토질 토사에서 투수계수 및 압밀계수와 높은 연관성을 가지고 있는 것으로 알려진 간극비와는 상호관계를 나타내지 않은 반면, 부유구조에서는 간극비의 증가에 따라서 투수계수가 감소하는 것으로 나타났다.

Investigation of 1D sand compression response using enhanced compressibility model

  • Chong, Song-Hun
    • Geomechanics and Engineering
    • /
    • 제25권4호
    • /
    • pp.341-345
    • /
    • 2021
  • 1D sand compression response to ko-loading experiences volume contraction from low to high effective stress regimes. Previous study suggested compressibility model with physically correct asymptotic void ratios at low and high stress levels and examined only for both remolded clays and natural clays. This study extends the validity of Enhanced Terzaghi model for different sand types complied from 1D compression data. The model involved with four parameters can adequately fit 1D sand compression data for a wide stress range. The low stress obtained from fitting parameters helps to identify the initial fabric conditions. In addition, strong correlation between compressibility and the void ratio at low stress facilitates determination of self-consistent fitting parameters. The computed tangent constrained modulus can capture monotonic stiffening effect induced by an increase in effective stress. The magnitude of tangent stiffness during large strain test should not be associated with small strain stiffness values. The use of a single continuous function to capture 1D stress-strain sand response to ko-loading can improve numerical efficiency and systematically quantify the yield stress instead of ad hoc methods.

Compressibility of Changi sand in K0 consolidation

  • Wanatowski, D.;Chu, J.;Gan, C.L.
    • Geomechanics and Engineering
    • /
    • 제1권3호
    • /
    • pp.241-257
    • /
    • 2009
  • The one-dimensional compressibility of sand is an important property for the estimation of settlement or deformation of sand deposits. The $K_0$ value of sand is also an important design parameter. Experimental results are presented in this paper to study the compressibility of sand in $K_0$ consolidation tests. The $K_0$ consolidation tests were carried out using a triaxial cell and a plane-strain apparatus. Specimens prepared using both the moist tamping and the water sedimentation methods were tested. The testing data demonstrate that the type of testing apparatus does not affect the $K_0$ measurement if proper boundary conditions are imposed in the tests. The data also show that the compressibility and the $K_0$ value of loose sand specimens prepared using the moist tamping method are very sensitive to the variation of void ratio. The $K_0$ values measured from these tests do not agree with the $K_0$ values calculated from Jaky's equation. The compressibility and $K_0$ values of sand obtained from tests on specimens prepared using different preparation methods are different which may reflect the influence of soil fabrics or structures on the one dimensional compression behavior of sand.

Multi-scale calibration of a line-style sand pluviator

  • Yifan Yang;Dirk A. de Lange;Huan Wang;Amin Askarinejad
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.431-441
    • /
    • 2024
  • A newly developed line-style sand pluviator has been calibrated to prepare repeatable sand specimens of specific statuses of compactness and homogeneity for laboratory tests. Sand is falling via a bottom slot of a fixed hopper, and by moving the sample container under the slot, the container is evenly filled with sand. The pluviator is designed with high flexibility: The falling height of sand, the hopper's opening width and the relative moving speed between the hopper and the sample box can be easily adjusted. By changing these control factors, sand specimens of a wide range of densities can be prepared. A series of specimen preparation was performed using the coarse Merwede River sand. Performance of the pluviator was systematically evaluated by exploring the alteration of achievable density, as well as checking the homogeneity and fabric of the prepared samples by CT scanning. It was found that the density of prepared coarse sand samples has monotonic correlations with none of the three control factors. Furthermore, CT scanning results suggested that the prepared samples exhibited excellent homogeneity in the horizontal direction but periodical alteration of density in the vertical direction. Based on these calibration test results, a preliminary hypothesis is proposed to describe the general working principles of this type of pluviators a priori, illustrating the mechanisms dominating the non-monotonic correlations between control factors and the relative density as well as the vertically prevalent heterogeneity of specimens. Accordingly, practical recommendations are made in a unified framework in order to lessen the load of similar calibration work.

용해재료가 포함된 지반의 전단강도 특성 (Shear Strength Characteristics of Geo - Soluble - Materials)

  • 짠밍콰;박정희;변용훈;신호성;이종섭
    • 한국지반공학회논문집
    • /
    • 제27권12호
    • /
    • pp.17-25
    • /
    • 2011
  • 흙입자의 구조는 흙을 구성하는 용해성 입자의 용해작용, 건조작용 그리고 고결화 현상과 같은 특정요인에 의해 영향을 받으며 입자구조의 변화는 흙의 역학적 거동에 큰 영향을 미친다. 본 논문에서는 흙속에 포함된 용해성입자의 용해작용이 전단강도에 미치는 영향을 조사하였다. 직접전단실험을 위해 소금과 모래로 구성된 혼합재를 이용하여 시료를 조성하고 전체시료에 대한 용해성 입자의 부피비를 조절하면서 실험을 수행하였으며 실험과 동일한 조건하에 서 수치해석을 수행하였다. 입자의 소실과정을 위해 실험에서는 소금-모래 혼합재를 포화시켜 소금을 용해시켰으며 수치해석에서는 용해성 입자의 크기를 줄이는 것으로 용해과정을 모사하였다. 실험결과, 용해성 입자의 부피비가 증가할수록 내부마찰각은 감소하였고, 시료의 수직변형은 팽창거동에서 수축거동으로 변화하였다. 수치해석은 실험 결과와 유사한 거시적 거동을 보여주었다. 미시적관점에서, 입자가 용해됨에 따라 간극비의 증가, 접촉점 수의 감소, 전단접촉력의 증가, 접촉력 연결고리의 이방성에 의해 새로운 입자구조가 생성됨을 보여주었다. 이러한 미시적 거동의 변화는 입자의 용해작용 후 전단거동에 영향을 주게 된다. 본 연구에서는 기초나 지반구조물의 설계와 시공 시 지반재료의 용해에 따른 전단강도을 고려해야 함을 보여준다.

폐기물매립지 인공식재지반 조성 사례연구 -수도권매립지 제방이격구간 식재층을 대상으로- (A Case Study on the Creating Artificial Planting Ground on the Waste Landfill Sites -In Case of the Bank Isolated Section Planting Layer at the Landfills of Satellite Cities of Seoul-)

  • 조주형;이재근
    • 한국조경학회지
    • /
    • 제29권1호
    • /
    • pp.131-139
    • /
    • 2001
  • This paper aims at surveying through case studies the planting possibility on the interval artificial ground between the bank and the core landfill of the first section of works in the SUDOKWON Landfill area landfill area which was completed, followed by the layer-on-layer landfill process involving the latch or sealing layer against emitting landfill gas from the reclaimed waste. The survey results are as follows; 1. The layers of the artificial planting ground on the landfill were established on the basis of top-on-top procedure for a waste layer, a topping soil layer (T=50cm), a gas blocking layer (broken stones T=30cm), a filter layer (non-woven fabric 700g), a sheet protecting soil layer (T=20cm), and a blocking layer (HDPE SHEET 2.0mm), an irrigation layer (SAND T=30cm), a filter layer (non-woven fabric 700g), a sheet protecting soil layer (T=20cm), and a blocking layer (HDPE SHEET 2.0mm), an irrigation layer (SAND T=30cm), a filter layer (non-woven fabric 700g), a planting layer (T=90cm+), a top mound (T=2m). 2. Since no direct damage on the planting layer affected by the landfill gas was detected, planting is found to be still possible and successful except the severely unequal subsidence portion. 3. The mortality rate is discovered different on different trees: Pinus thunbergii (H3.0$\times$W1.0m) 11.25%, Pinus thunbergii (H2.5$\times$W0.8m) 4.73%, Koelreuteira paniculata 8.67%, Hibiscus syriacus 5.68%, Deutzia parviflora 6.50%, Forsythia koreana 8.17%, Rho. yedoense v. poukhanese 32.22%, and Spiraea pru v. symplicifolia 18.89%; although the last two of which are generally considered to have a strong generic growing character, they are subject to be weakened when exposed to the contaminated microclimate of the site like landfill gas. 4. The damage rates, on Pinus thunbergii, Koelreuteria paniculata, Hibiscus syracus, Forsythia koreana, Deutzia parviflora, Rho. yedoense v. poukhanense were shown to decrease to 7.31-17.69% in the second check (June 2000) lower than 5.77-46.92% in the first examination (June 1999), whereas the damage on Spiraea pru v. symplicifolia relatively increased. It is believed that preparatory method of the air pollution, change of temperature, odor by emitting landfill gas, and minute dust from vehicles should be made, and a research on this matter will be conducted in the near future.

  • PDF

Prediction of maximum shear modulus (Gmax) of granular soil using empirical, neural network and adaptive neuro fuzzy inference system models

  • Hajian, Alireza;Bayat, Meysam
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.291-304
    • /
    • 2022
  • Maximum shear modulus (Gmax or G0) is an important soil property useful for many engineering applications, such as the analysis of soil-structure interactions, soil stability, liquefaction evaluation, ground deformation and performance of seismic design. In the current study, bender element (BE) tests are used to evaluate the effect of the void ratio, effective confining pressure, grading characteristics (D50, Cu and Cc), anisotropic consolidation and initial fabric anisotropy produced during specimen preparation on the Gmax of sand-gravel mixtures. Based on the tests results, an empirical equation is proposed to predict Gmax in granular soils, evaluated by the experimental data. The artificial neural network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were also applied. Coefficient of determination (R2) and Root Mean Square Error (RMSE) between predicted and measured values of Gmax were calculated for the empirical equation, ANN and ANFIS. The results indicate that all methods accuracy is high; however, ANFIS achieves the highest accuracy amongst the presented methods.