• Title/Summary/Keyword: sand concrete

Search Result 791, Processing Time 0.034 seconds

The Influence of the Properties of Crushed Stone Sand on the Mixing Factor and Compressive Strength of Concrete (부순모래의 품질특성이 콘크리트의 배합인자 및 압축강도에 미치는 영향)

  • Hong Ji Hoon;Yum Jun Haun;Choi Jin Man;Jeong Yang;Lee Seong Yeun;Yeo Byung Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.623-626
    • /
    • 2005
  • This study is aimed for investigating the influence of the properties of crushed stone sand on the mixing factor and compressive strength of concrete. The results of this study are as follows; The influence of Particle Shape and Very Fine Sand(VFS) of crushed stone sand on the mixing factor was higher than Fineness Modulus. The demand water of concrete with crushed stone sand was decreased about $12\~18kg/m^3$with increasing $4\%$ of Particle Shape and increased $8\~15kg/m^3$ with increasing $3\%$ of ratio of Very Fine Sand(VFS).

  • PDF

An Experimental Study on the Engineering Properties of Concrete with Kind of Fine Aggregate and Addition Ratio of Water Reducing Agents (잔골재 종류 및 감소제 첨가율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Shin, Kwan-Soo;Na, Chul-Sung;Paek, Yong-Lak;Choi, Se-Jin;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.157-160
    • /
    • 2006
  • Recently, trouble of sand supply is occurred according to exhaustion of natural sand resources. To solve this problem, sea sand and crushed sand are used. But, necessity of water reducing agent because quality of concrete that use sea sand and crushed sand is deteriorated. Therefore in this study was examined on the engineering properties of concrete with kind of fine aggregate and addition ratio of water reducing agents. As a result, compressive strength appeared similar standard regardless of kind of fine aggregate. Compressive strength, durability was similar in decrease of the unit water content by increase of addition ratio of the water reducing agent. Also, drying shrinkage resistivity was improved because the unit water content decreased.

  • PDF

Quality Improvement of Concrete Depending on the Mixing of Fine Aggregates Different Compositions and Grain Sizes (성분 및 입도분포가 다른 잔골재의 혼합에 의한 콘크리트의 품질향상)

  • Kim, Young-Hee;Park, Min-Yong;Kim, Jung-Bin;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.77-79
    • /
    • 2012
  • This study is to assess the differences between concrete having only one of fine aggregates such as crushed fine aggregates, sea sand and blast furnace slag in it and concrete having mixture of two kinds of those fine aggregates in it in order to find out how to deal with the lack of some aggregates. The findings are as follows. In terms of slump, the concrete containing sea sand and blast furnace slag has very low slump values while the concrete having the mixture of crushed fine aggregate and the other fine aggregates showed better workability. In terms of compressive strength, the concrete containing the mixture of two kinds of aggregates showed higher compressive strength. Accordingly, it is likely that the concrete containing the mixture of crushed fine aggregate, sea sand and blast furnace slag is better than the concrete with only one kind of fine aggregates in terms of the usability.

  • PDF

Copper or ferrous slag as substitutes for fine aggregates in concrete

  • Thomas, Job;Thaickavil, Nassif N.;Abraham, Mathews P.
    • Advances in concrete construction
    • /
    • v.6 no.5
    • /
    • pp.545-560
    • /
    • 2018
  • The ever-increasing cost of natural sand and the environmental impacts of extracting manufactured sand (quarry sand) calls for exploring the potential to use alternative materials as fine aggregates in concrete. Copper slag and ferrous slag are industrial by products obtained from the smelting process of copper and iron respectively. A large quantity of copper slag and ferrous slag end up being disposed as waste in landfills and this poses a serious threat to the environment. Copper slag and ferrous slag have similar physical and chemical properties as natural sand and also exhibit pozzolanic activity. This paper studies the technical feasibility of industrial by-products such as copper slag and ferrous slag to replace the fine aggregate in concrete by evaluating the workability, strength and durability characteristics of concrete. The test results indicate that the strength properties are not affected by 40% or 100% replacement of quarry sand with iron slag or copper slag. However, 40% replacement of quarry sand with iron slag or copper slag in concrete is recommended considering the durability aspects of concrete.

Utilization of Waste Concrete as Vertical Drain Material (연직배수재료로 폐콘크리트 활용에 관한 기초연구)

  • 이용수;정하익;김우성;권용완
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.571-576
    • /
    • 2001
  • This paper presents the utilization of waste concrete as vertical drain material. The materials used as vertical drain material were the waste concrete, obtained from the demolished apartments or concrete structure and sand. In this study, laboratory model test was performed to investigate settlement and bearing capacity between sand compaction pile and waste concrete compaction pile. The results of laboratory model test showed that the improvement efficiency of soft ground by waste concrete compaction pile was better than sand compaction pile.

  • PDF

Fundamental Characteristics of Concrete According to Fineness Modulus and Replacement Ratio of Crushed Sand (부순모래의 조립률 및 치환률에 따른 콘크리트의 기초 특성)

  • Yun, Yong-Ho;Choi, Jong-Oh;Lee, Dong-Gyu;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.244-251
    • /
    • 2015
  • The paper evaluates the effect of the physical property, fineness modulus (FM) and replacement ratio of crushed sand on the characteristics of concrete. This is intended to use crushed sand from Daegu-Kyungbuk region as the fine aggregate of concrete. The experimental result indicates that the replacement ratio of crushed sand needs to be less than 50% to satisfy the mixed gradation of both natural and crushed sand when their FMs are 2.0 and 3.2, respectively. The slump of concrete with crushed sand increased as the replacement ratio of crushed sand increased, while the workability of concrete with the replacement ratio of more than 75% was significantly reduced. The air content and bleeding rate of concrete was reduced as the replacement ratio increased. Furthermore, due to the enhancement of the concrete adhesive regardless of the FM of crushed sand, compressive strength of concrete tended to improve as the replacement ratio increased.

Effect of the Grain Shape of Crushed Sand on Concrete Qualities (부순모래의 입형이 콘크리트의 품질에 미치는 영향)

  • Koh, Kyung Taek;Ryu, Gum Sung;Lee, Jang Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.229-236
    • /
    • 2006
  • Recently, the use of crushed sand produced by the crushing of stone is continuously increasing to reach an utilization rate of about 20% of the whole fine aggregates that is foreseen to grow larger in the future. However, the lack of recognition concerning quality during the production of crushed sand results in the use of crushed sand that do not satisfy the KS F 2527 standard during the manufacture of concrete. And, studies investigating the effects of such crushed sand on concrete are still neglected. Therefore, this study intends to provide data that can be exploited for concrete using crushed sand through the analysis of the effects of the grain shape of crushed sand on the quality of concrete. Results revealed problems in the workability, air entraining and durability for a value of 53% for the solid volume percentage for shape determination specified by the current KS F 2527. Analysis showed that the adjustment of the solid volume percentage for shape determination from the currently specified 53% to 55% will improve the quality of concrete using crushed sand in high strength concrete particularly.

Effective Use of Aggregate Fines (석분의 효과적인 이용에 관한 연구)

  • 백신원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixture such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixture such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the finished mixture. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the deposits of natural sands have slowly been depleted, it has become necessary and economical to produce crushed sand(manufactured fine aggregate). It is reported that crushed sand differs from natural sands in gradation, particle shape and texture, and that the content of micro fines in the crushed sand affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with higher micro fines. This study provides a firm data to apply crushed sand with higher micro fines.

  • PDF

A study on mechanical properties of concrete including activated recycled plastic waste

  • Ashok, M.;Jayabalan, P.;Saraswathy, V.;Muralidharan, S.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • This paper describes the experimental studies carried out to determine the properties of fresh and hardened concrete with Recycled Plastic Waste (RPW) as a partial replacement material for fine aggregates. In the experimental study, RPW was used for replacing river sand and manufactured sand (M sand) aggregates in concrete. The replacement level of fine aggregates was ranging from 5% to 20% by volume with an increment of 5%. M40 grade of concrete with water cement ratio of 0.40 was used in this study. Two different types of RPW were used, and they are (i) un-activated RPW and (ii) activated RPW. The activated RPW was obtained by alkali activation of un-activated RPW using NaOH solution. The hardened properties of the concrete determined were dry density, compressive strength, split tensile strength, flexural strength and ultrasonic pulse velocity (UPV). The properties of the concrete with river sand, M sand, activated RPW and un-activated RPW were compared and inferences were drawn. The effect of activation using NaOH solution was investigated using FT-IR study. The micro structural examination of hardened concrete was carried out using Scanning Electron Microscopy (SEM). The test results show that the strength of concrete with activated RPW was more than that of un-activated RPW. From the results, it is evident that it is feasible to use 5% un-activated RPW and 15% activated RPW as fine aggregates for making concrete without affecting the strength properties.

Study on the Long age Strength Properties of Antiwashout Underwater Concrete (수중불분리성 콘크리트의 장기강도 특성에 관한 연구)

  • 박세인;이동화;김종수;김명수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.113-117
    • /
    • 2000
  • The objective of this study is to find the long-age strength property and the compressive strength of age which is used as the specified concrete strength. The W/W ratio (45%, 50%, 55%, 60%) fine aggregate of useful river sand or blended sand(river sane : sea sand=1:1) were chosen as the experimental parameters. the experimental results show that pH(it means the material segregation resistance) & suspension were increased larger, so W/C become larger, and slump flow was increased as W/C increased (except W/C=60%), air-contents were decreased as W/C became increase and all of this results are satisfied with the under of 40%. The compressive strength ( a case use only river sand as fine aggregate) is showed less than the case of blended asnd. Because the unit weight of the blended sand is more heavy than the unit weigh of the river sand. The results of the case which haven been used only river sand, and the case have been used blended sand), both case have considered W/C. So it's possible to use the compressive strength of age 28 day like the case of plain concrete.

  • PDF