• Title/Summary/Keyword: sand compounds

Search Result 79, Processing Time 0.031 seconds

Development and Field Installation of a System of Simultaneously Removing Dust and Volatile Organic Compounds from Furan Process in Foundry (주물공장의 Furan 공정에서 발생하는 휘발성 유기 화합물 및 분진의 동시제거 시스템 개발 및 현장설치 연구)

  • Park, Jin Soo;Jung, Jae Hak;Lee, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.136-148
    • /
    • 2006
  • A foundry makes various machinery parts made by iron. For manufacturing machinery parts, they usually uses wooden mold with molding sand and pour the molten iron into wooden mold through inlet. A foundry have many processes including Furan process, In Furan process workers prepares a wooden mold in the molding sand. So they fixes wooden mold in sand housing and then they fill the molding sand in the sand housing. Molding sand should be sticky enough to sustain the shape of wooden mold, so several materials are needed to prepare the suitable molding sand. The first step of Furan process is making the molding sand with molding sand and Voltaic Organic Compounds (VOC) and the second step of Furan process is pour the molding sand into the wooden molding housing. This two step of process generated noxious VOC and various size of dust. So the process is very dirty and dangerous one. Because of these, Workers frequently shrink out of the plant. The company related with foundry usually faced on the difficult situation for engagement and always have shortage of hiring problem. Through this study, we developed a system which removes toxic VOC and dust simultaneously. We design and construct real system and install it at real plant. Before setting up this system, the working surroundings VOC (for formaldehyde) 15 ppm and Dust(for $PM_{10}$) $8,000{\mu}g/m^3$. After setting up this system, working surroundings is improved by VOC (for formaldehyde) 0 ppm, Dust(for $PM_{10}$) $4{\mu}g/m^3$, and the work evasion factor is removed. So we contribute to solve hiring problem of this company and increasing the productivity also.

Decomposition of Organophosphorous Compounds with Ultraviolet Energy(UV-C) (자외선에너지(UV-C)를 이용한 유기인계 화합물의 분해)

  • Kim, Jong-Hyang;Min, Byoung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.28-32
    • /
    • 1998
  • Two organophosphorous insecticides, Dichlorovos and Chloropyrifos were degraded in the presence of UV irradiation, UV irradiation with $TiO_2$ powder and UV irradiation with sea sand using low pressure mercury lamp. The identification of these compounds was carried out by gas chromatograph with a nitrogen-phosphorous detector, Total Organic Carbon and Ion Chromatograph, respectively. Both dichlorvos and chloropyrifos, UV irradiation with sea sand were more degradable than UV irradiation and UV irradiation with $TiO_2$ powder. The final products were $Cl^-$ in Dichlorvos, $Cl^-$ $SO_4{^{2-}}$ in Chloropyrifos, respectively.

  • PDF

A Study on the Metal Ion Components of Airborn Particulates during Yellow Sand Phenomena in Seoul (황사현상시 서울지역 대기분진의 성분에 관한 연구)

  • 신찬기;박태술;김윤신
    • Journal of environmental and Sanitary engineering
    • /
    • v.6 no.1
    • /
    • pp.47-62
    • /
    • 1991
  • Yellow Sand Phenomena was observed from April 8 th to 10 th in 1990. During this period particle was collected to investigate the chacteristics of chemical composition of particulate by High Volume Air Sampler and Andersen Air Sa~npler in Seoul. During this period the particle concentration was 350 yg/$m^3$ and the anions, cations, and metal concentrations were increased and the orders of these were $S0_4\;^{-2}>N0_3\;^->Cl^->F^-, Na^+>Ca^{+2}>NH_4\;^+>Mg^{2+}>K^+$, and Fe>Al>Si>Zn>Pb respectively. The principal source of Yellow Sand were identified soil and sea salt. Mn used by the trace element of soil, the persentage of contribution from soil was calculated to be about 81.3% for the particle increased by Yellow Sand Phenomena. Also the principal chemical compounds of particle were estimate metals(Fe, Al, Si, Zn) oxides, $CaSO_4, NaSO_4, MgSO_4, NaC1, MgCl_2$ and $(NH_4)_2SO_4$.

  • PDF

Removal Property of Taste and Odor Causing Material in Pulsator Clarifier (맥동식 침전지에서 맛·냄새 유발물질 제거 특성)

  • Jeong, Il Yong;Cha, Min Whan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.104-109
    • /
    • 2011
  • The removal efficiencies of 2-methylisoborneol (MIB) and geosmin were investigated to reveal removal characteristics of typical organic compounds causing disagreeable taste and odor at the conventional water treatment plant installed with pulsator clarifier patented by the French company $Degr{\acute{e}}mont$. The injection rate of Powdered Activated Carbon (PAC) into water was changed step wisely as we conducted jar tests in the laboratory and water treatment in the actual plant. 2-MIB concentration decreased linearly while geosmin did exponentially along with the injection rate of PAC at our jar tests. The removal efficiency of geosmin by PAC injection was considerably higher than that of 2-MIB. In the real pulsator clarifier, 2-MIB concentration started decreasing as the injection rate reached up to 10 mg/L of PAC. On the other hand, the concentration of geosmin in water decreased proportional to the injection rate of PAC. In the sand filtration, removal efficiencies of 2-MIB and geosmin on July were much higher than those on March. It was carefully suggested beforehand and found afterwards that general microorganisms notably existed in the sand filter with no chlorine in filter influent and backwash water and the sand filter biologically activated removed much more odor compounds. It was considered as the reason why the removal efficiency of 2-MIB and geosmin was increased. The microbial activity maybe increased in summer with water temperature rising and low filtration rate possibly increased contact time between odor compounds and general microorganisms.

Removal Characteristics of Synthetic Musk Compounds in Water by Ozone Treatment (오존처리에 의한 수중의 인공 사향물질 제거특성)

  • Seo, Chang-Dong;Son, Hee-Jong;Yoom, Hoon-Sik;Lee, Sang-Won;Ryu, Dong-Chun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.73-78
    • /
    • 2012
  • In this study, three different synthetic musk compounds (SMCs) in the Nakdong river water (raw water) and rapid sand filtered water were treated by $O_3$ process. The experimental results showed that the removal efficiency of musk ketone (MK) was lower than removal efficiency of AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene) and HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[c]-2-benzopyran) for both the raw water and the rapid sand filtered water. And in general, the removal efficiencies of three SMCs in the raw water were lower than that in the sand filtered water. Under the $O_3$ dose of 0.5~10.0 mg/L, the removal rate constants (k) of three SMCs for the raw and sand filtered waters increased rapidly with the increased $O_3$ dose. In the case of drinking water treatment plants (DWTPs) which were selected pre- and post-$O_3$ processes (located in the downstream of Nakdong River), operation conditions of pre- and post-$O_3$ process were $0.5{\sim}2.0mg{\cdot}O_3/L$ (2~4 min) and $0.5{\sim}2.5mg{\cdot}O_3/L$ (6~8 min). Therefore, $O_3$ doses and contact times of same conditions with above were very difficult to remove SMCs in DWTPs.

Distribution Characteristics of Organotin Compounds in Sediments inside Jeju Harbor of Jeju Island (제주도 제주항내 퇴적물 중의 유기주석화합물의 분포 특성)

  • Kam, Sang-Kyu;Kim, Hyun-Jeong;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.385-394
    • /
    • 2011
  • Organotin compounds (OTs), namely butyltins compounds (BTs) and phenyltin compounds (PhTs), were measured in surface and core sediments collected in Jeju harbor. The horizontal and vertical distribution was examined and the relationship between the concentration of OTs and organic matter content and particle size distribution was also studied. BTs were detected in significant concentrations in sediments inside Jeju harbor. PhTs were detected in very low concentrations, compared to BTs. The main species in BTs and PhTs were dibutyltin (DBT) and monobutyltin (MBT), monophenyltin (MPhT), respectively. In the relationships between the concentrations of total BTs and organic carbon content, the significant correlations ($r^2$=0.4898 in surface sediments, $r^2$=0.53 in one core sediments) and no correlation in another core sediments obtained, which is estimated that the distribution of BTs in sediments were affected by several factors, such as their physicochemical properties including organic carbon content, and a tide, etc. In the relationships between the concentrations of total BTs and particle size (mud, sand, and gravel) in sediments, the concentrations of total BTs were higher in the sediments with higher mud content, indicating that higher BTs were distributed with increasing sediments of fine granules.

Comparison of Extractive Nitrogenous Constituents in the Raw Anchovy (Engraulis japonica), Big Eyed Herring (Harengula zunasi), and Northern Sand Lance (Ammodytes personatus) (멸치, 밴댕이 및 까나리의 함질소 엑스성분 비교)

  • Park, Choon-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1458-1464
    • /
    • 1999
  • The whole body of three species of fishes, raw anchovy (Engraulis japonica), big eyed herring (Harengula zunasi), and northern sand lance (Ammodytes personatus) catched at the south adjacent coast of Korea, were analyzed for extractive nitrogen, free amino acids, combined amino acids, ATP and its related compounds quaternary ammonium bases, and guanidino compounds using specimens collected in May and July 1991, and the composition of these nitrogenous components were compared with each other. The contents of extractive nitrogen in anchovy, big eyed herring, and northern sand lance were 633 mg, 601 mg, and 455 mg/100 g, respectively. Thirty-one or thirty-two kinds of free amino acids were found in the extracts of the three species of fishes. Histidine, taurine, alanine, leucine, carnosine, glutamic acid, and lysine were the major free amino acids in every sample. The composition of the major extractive components such as free amino acids, combined amino acids, ATP and its related compounds, TMAO, and creatine in the extracts were similar to each other, but their contents were some different individually.

  • PDF

Material Characteristic of Slags and Iron Bloom Produced by Smelting Process Using Sand Iron (사철 제련을 통해 생산된 슬래그와 괴련철의 재료과학적 특성 비교)

  • Cho, Sung Mo;Cho, Hyun Kyung;Kwon, In Cheol;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.34 no.1
    • /
    • pp.39-50
    • /
    • 2018
  • This study replicated traditional smelting methods to produce iron blooms from sand iron. The metallurgical properties of the slag and the iron blooms were analyzed. The sand iron materials used in the smelting experiments, which were based on ancient documents, were collected from Gyeong-Ju and Pohang. Analysis by WD-XRF and XRD showed that Gyeong-Ju's sand iron contains a high-titanium, with magnetite, and Pohang's sand iron contains a low-titanium, which magnetite and ilmenite were mixed. Analysis of the slag with XRD, and the micro-structure with metal microscopes and SEM-EDS, confirmed that the major compounds in the slag of the Gyeong-Ju's sand iron were fayalite and $w\ddot{u}stite$, and those in the slag of the Pohang's sand iron were titanomagnetite and fayalite. The differences in the main constituents were confirmed according to the Ti quantity. Finally, we observed the microstructures of the iron blooms. In the case of the iron bloom produced from Gyeong-Ju's sand iron, the outside was found to be dominantly a pearlite of eutectoid steel, while the inside was a hypo-eutectoid steel where ferrite and pearlite were mixed together. While, the major component of the iron bloom produced from Pohang's sand iron was ferrite, which is almost like pure iron. However, there were many impurities inside the iron blooms. Therefore, this experiment confirmed that making ironware required a process that involved removing internal impurities, refining, and welding. It will be an important data to identify the characteristics of iron by-products and the site through traditional iron-making experiments under various conditions.

Desorption of organic Compounds from the Simulated Soils by Soil Vapor Extraction (인공토양으로부터 토양증기추출법에 의한 유기화합물의 탈착 현상에 관한 실험 연구)

  • 이병환;이종협
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.101-114
    • /
    • 1998
  • Soil vapor extraction (SVE) is known to be an effective process to remove the contaminants from the soils by enhancing the vaporization of organic compounds using forced vapor flows or applying vacuum through soils. Experiments are carried out to investigate the effects of the organic contaminants, types of soils, and water contents on the removal efficiency with operating time. In the study, simulated soils include the glass bead which has no micropore, sand and molecular sieve which has a large volume of micropores. As model organic pollutants, toluene, methyl ethyl ketone, and trichloroethylene are selected. Desorption experiments are conducted by flowing nitrogen gas. Under the experimental conditions, it is found that there are linear relationships between logarithm of removal efficiency and logarithm of number of pore volumes. The number of pore volumes are defined as the total amount of air flow through the soil column divided by the pore volume of soil column. For three organic compounds studied, the removal rate is slow for no water content, while the number of pore volumes for removal of organic compounds are notably reduced for water contents up to 37%. For the removal of dense organic compound, such as trichloroethylene, a large number of pore volumes are needed. Also, the effects of the characteristics of simulated soils on the removal efficiency of organic compounds are studied. After the characterization of soil surface, porosity of soil columns and types of contaminants, the results could provide a basis for the design of SVE process.

  • PDF

Diversity of Marine-Derived Aspergillus from Tidal Mudflats and Sea Sand in Korea

  • Lee, Seobihn;Park, Myung Soo;Lim, Young Woon
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.237-247
    • /
    • 2016
  • Aspergillus (Trichocomaceae, Eurotiales, and Ascomycota) is a genus of well-defined asexual spore-forming fungi that produce valuable compounds such as secondary metabolites and enzymes; however, some species are also responsible for diseases in plants and animals, including humans. To date, 26 Aspergillus species have been reported in Korea, with most species located in terrestrial environments. In our study, Aspergillus species were isolated from mudflats and sea sand along the western and southern coasts of Korea. A total of 84 strains were isolated and identified as 17 Aspergillus species in 11 sections on the basis of both morphological characteristics and sequence analysis of the calmodulin gene (CaM) locus. Commonly isolated species were A. fumigatus (26 strains), A. sydowii (14 strains), and A. terreus (10 strains). The diversity of Aspergillus species isolated from mudflats (13 species) was higher than the diversity of those from sea sand (five species). Four identified species-A. caesiellus, A. montenegroi, A. rhizopodus, and A. tabacinus-are in the first records in Korea. Here, we provide detailed descriptions of the morphological characteristics of these four species.