Browse > Article
http://dx.doi.org/10.4491/KSEE.2012.34.2.073

Removal Characteristics of Synthetic Musk Compounds in Water by Ozone Treatment  

Seo, Chang-Dong (Water Quality Institute, Busan Water Authority)
Son, Hee-Jong (Water Quality Institute, Busan Water Authority)
Yoom, Hoon-Sik (Water Quality Institute, Busan Water Authority)
Lee, Sang-Won (Water Quality Institute, Busan Water Authority)
Ryu, Dong-Chun (Water Quality Institute, Busan Water Authority)
Publication Information
Abstract
In this study, three different synthetic musk compounds (SMCs) in the Nakdong river water (raw water) and rapid sand filtered water were treated by $O_3$ process. The experimental results showed that the removal efficiency of musk ketone (MK) was lower than removal efficiency of AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene) and HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[c]-2-benzopyran) for both the raw water and the rapid sand filtered water. And in general, the removal efficiencies of three SMCs in the raw water were lower than that in the sand filtered water. Under the $O_3$ dose of 0.5~10.0 mg/L, the removal rate constants (k) of three SMCs for the raw and sand filtered waters increased rapidly with the increased $O_3$ dose. In the case of drinking water treatment plants (DWTPs) which were selected pre- and post-$O_3$ processes (located in the downstream of Nakdong River), operation conditions of pre- and post-$O_3$ process were $0.5{\sim}2.0mg{\cdot}O_3/L$ (2~4 min) and $0.5{\sim}2.5mg{\cdot}O_3/L$ (6~8 min). Therefore, $O_3$ doses and contact times of same conditions with above were very difficult to remove SMCs in DWTPs.
Keywords
Synthetic Musk Compounds (SMCs); MK; AHTN; HHCB; Ozone Treatment; Half Life ($t_{1/2}$);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 von Gunten, U., "Ozonation of drinking water: Part I. Oxidation kinetics and product formation," Water Res., 37, 1443- 1467(2003).   DOI   ScienceOn
2 Tas, J. W., Balk, F., Ford, R. A., vandePlassche, E. J., "Environmental risk assessment musk ketone and musk xylene in the Netherlands in accordance with the EU-TGD," Chemosphere, 35, 2973-3002(1997).   DOI   ScienceOn
3 Paasivirta, J., Sinkkonen, S., Rantalainen, A. L., Broman, D. and Zebuhr, Y., "Temperature dependent properties of environmentally important synthetic musks," Environ. Sci. Pollut. Res. Int., 9(5), 345-355(2002).   DOI
4 Lee, I. S., Lee, S. H. and Oh, J. E., "Occurrence and fate of synthetic musk compounds in water environment," Water Res., 44, 214-222(2010).   DOI   ScienceOn
5 Janzen, N., Dopp, E., Hesse, J., Richards, J., Turk, J. and Bester, K., "Transformation products and reaction kinetics of fragrances in advanced wastewater treatment with ozone," Chemosphere, 85, 1481-1486(2011).   DOI   ScienceOn
6 Peck, A. M., "Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices," Anal. Bioanal. Chem., 386, 907-939(2006).   DOI
7 Heberer, T., "Occurrence, fate and assessment of polycyclic musk residues in the aquatic environment of urban area-a review," Acta Hydrochim. Hydrobiol., 30(5-6), 227-243(2002).   DOI   ScienceOn
8 Dsikowitzky, L., Schwarzbauer, J. and Littke, R., "Distribution of polycyclic musks in water and particulate matter of Lippe River (Germany)," Organic Geochemistry, 33, 1747- 758(2002).   DOI   ScienceOn
9 Simonich, S. L., Federle, T. W., Eckhoff, W. S., Rottiers, A., Webb, S., Sabaliunas, D. and Wolf, W., "Removal of fragrance materials during U.S. and European wastewater treatment," Environ. Sci. Technol., 36(13), 2839-2847(2002).   DOI   ScienceOn
10 Simonich, S. L., Begley, W. M., Debaere, G. and Eckhoff, W. S., "Trace analysis of fragrance materials in wastewater and treated wastewater," Environ. Sci. Technol., 34, 959-965 (2000).   DOI   ScienceOn
11 서창동, 손희종, 이인석, 오정은, "낙동강 수계에서의 인공 사향물질 검출 특성," 대한환경공학회지, 32(6), 615-624 (2010).
12 Westerhoff, P., Yoon, Y., Snyder, S. and Wert, E., "Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment," Environ. Sci. Technol., 39, 6649-6663(2005).   DOI   ScienceOn
13 Snyder, S. A., Wert, E. C., Lei, H. D., Westerhoff, P. and Yoon, Y., "What are the most effective treatment methods for removing EDCs and PPCPs?," J. AWWA., 36(10), 24- 27(2010).
14 Snyder, S. A., Wert, E. C., Rexing, D. J., Zegers, R. E. and Drury, D. D., "Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater," Ozone. Sci. Eng., 28, 445-460(2006).   DOI   ScienceOn
15 Ikehata, K., Gammal El-Din, M. and Snyder, S. A., "Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater," Ozone. Sci. Eng., 30, 21-26(2008).   DOI   ScienceOn
16 Balk, F. and Ford, R. A., "Environmental risk assessment for the polycyclic musks, AHTN and HHCB. I. Effect assessment and risk characterization," Toxicol. Lett., 111, 81-94(1999).   DOI   ScienceOn
17 Broseus, R., Vincent, S., Aboulfadl, K., Daneshvar, A., Shuve S., Barbeau, B. and Prevost, M., "Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment," Water Res., 43, 4707-4717(2009).   DOI   ScienceOn
18 Garcia-Ac, A., Broseus, R., Vincent, S., Barbeau, B., Prevst, M. and Shuve S., "Oxidation kinetics of cyclophosphamide and methotrexate by ozone in drinking water," Chemosphere, 79, 1056-1063(2010).
19 Gatermann, R., Biselli, S., Hunerfuss, H., Rimkus, G. G., Hecker, M. and Karbe, L., "Synthetic musks in the environment. Part 1: Species-dependent bioaccumulation of polycyclic and nitro musk fragrances in freshwater fish and mussels," Arch. Environ. Contam. Toxicol. 42, 437-446(2002).   DOI   ScienceOn