• Title/Summary/Keyword: sand, sand concrete

Search Result 792, Processing Time 0.025 seconds

Drying Shrinkage Cracking of Concrete used Very Fine Sand (미립 잔골재를 혼입한 콘크리트의 건조수축 균열 특성)

  • Lee, Eui-Bae;Park, Sang-Jun;Kim, Kyoung-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.90-91
    • /
    • 2014
  • In this study, the effect of very fine sand on drying shrinkage cracking of concrete was experimentally evaluated. As a result of the study, the time-to-cracking of concrete used very fine sand was shorter than plain concrete. Also, the stress rate of concrete used very fine sand was higher than plain concrete. It was due to the increase of water content when very fine sand was used in concrete. In conclusion, the use of very fine sand can lead the increase of water content to meet the target slump and higher potential of cracking of concrete.

  • PDF

Effect of Dune Sand on the Properties of Flowing Sand-Concrete (FSC)

  • Bouziani, Tayeb;Bederina, Madani;Hadjoudja, Mourad
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • Sand-concrete is being researched for potential usage in construction in Saharan regions of Algeria, because of shortage in coarse aggregate resources. This research work deals with the effect of dune sand, available in huge quantities in these regions, on the properties of flowing sand-concrete (FSC) prepared with different proportions of dune and river sands. Mini-cone slump test, v-funnel flow-time test and viscosity measurements were used to characterize the behaviour of FSC in fresh state. The 28-day compressive strength was also determined. Test results show that an optimal content of dune sand, which makes satisfied fresh and hardened properties of FSC, is obtained. Moreover, the obtained flow index (constant b) calculated by the help of power-law viscosity model is successfully correlated to the experimental results of v-funnel flow time.

Preliminary Study for Optimum Mix Design of Concrete Incorporation Waste Foundary Sand (폐주물사를 혼입한 콘크리트의 최적 배합설계를 위한 기초적 연구)

  • 백민경;이주형;김태경;윤경구;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.58-63
    • /
    • 1996
  • The waste foundry sand might be recycled in concrete, resulting in energy saving and environmental protection. An half Factorial Exprements were performed with the variables of W/C ratio, S/A, Sand/Waste foundry sand ratio and Slump as a preliminary study for optimum mix design of concrete. The results show that the W/C ratio is the most important factor to the concrete strength. The substitute of waste foundry sand up to 30% has little influence, saying that it can substitute the fine aggregate without damaging the concrete properties.

  • PDF

Bond Strength Properties of Antiwashout Underwater Concrete (수중 불분리성 콘크리트의 부착 강도 특성에 관한 연구)

  • 김명식;김기동;윤재범
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.89-99
    • /
    • 2000
  • The objective of this study is to investigate the bond strength properties of antiwashout underwater concrete. The arrangement of bars (vertical bar, horizontal upper bar, horizontal lower bar), condition of casting and curing (fresh water, sea water), type of fine aggregate (river sand, blended sand(river sand : sea sand = 1:1), and proportioning strength of concrete (210, 240, 270, 300, 330kgf/$\textrm{cm}^2$)are chosen as the experimental parameters. The test results(ultimate bond stress) are compared with bond and development provisions of the ACI Building Code(ACI 318-89) and proposed equations from previous research(which was proposed by Orangun et. al). The experimental results show that ultimate bond stress of antiwashout underwater concrete which arranged bar on the horizontal lower, used the blend sand, and was cast and cured in the fresh water are higher that other conditions. The ultimate bond stress were increased in proportion to {{{{( SQRT {fcu }) }}3 2. From this study, rational analytic formula for the ultimate bond stress are to be from compressive strength of concrete.

A Study on Application of Waste Sand as Concrete Fine Aggregate (콘크리트용 잔골재로서 폐기물 모래의 적용성에 관한 연구)

  • 윤장길;김효열;임남기
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.15-20
    • /
    • 2004
  • To the development on reusing method of the heat-source waste at Daegu Bisan dyeing-complex, this study is aimed to application of it's crushing material (hereafter waste sand) as concrete fine aggregate. The results are as follows; 1. Flow and unit weight of mortar using waste sand as concrete fine aggregate are decreased. 2. At the results of compressive strength test and bending strength test, mortar using waste sand superior to plain mortar within 80% substitute ratio of waste sand. Because increasing rate of compressive strength is similar through increasing age, waste sand performs as filler's function of no-effect with cement only. 3. At the results of concrete application test, unit weight of concrete using waste sand is similar to plain concrete and compressive strength of concrete is superior to plain likewise the results of mortar test

  • PDF

A Study on the physical Properties of concrete Using Waste Foundry Sand (폐주물사를 사용한 콘크리트의 물성에 관한 연구)

  • 최연왕;최재진;김기형;김용직
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.52-57
    • /
    • 1999
  • The aimed of this study is to analyze the qualities of foundry waste sand and the basic physic of the concrete mixed with the foundry waste sand, as a way of study for reusing the foundry waste sand disused in the foundry as the fine aggregate for concrete. According to the experimental results, the foundry waste sand is composed of silica ore whose main ingredient is SiO2 and doesn't produce harmful objects of hydration reaction, and the fluidity of concrete shows a decline with the increase of replacement ratio of foundry waste sand, and the compress strength, the tensile strength, the elastic modulus of concrete containing foundry waste sand are improved at the replacement rate of 25%.

  • PDF

An Experimental Study on the Properties of Crushed Sand in Capital Region and Concrete according to the Replacement Ratio of Crushed Sand (수도권 부순모래의 품질현황 및 부순모래 대체율에 따른 콘크리트의 특성에 관한 연구)

  • Choi, Se-Jin;Lee, Seong-Yeon;Yeo, Byung-Chul;Kim, Moo-Han
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.1 s.15
    • /
    • pp.63-68
    • /
    • 2005
  • Generally, aggregate may limit the workability, strength and durability of concrete, and good concrete cannot be made with aggregate of bad property including low strength, bad shape and grading. But recently, it has been insufficient in quantity to collect good natural aggregate because of exhaustion of aggregate resources. In case of Korea, the using ratio of crushed stone occupies about 97 percent of total coarse aggregate, and ratio of crushed sand occupies about 18.3 percent of total fine aggregate. This is an experimental study to compare and analyze the properties of crushed sand for concrete in capital region and concrete according to the replacement ratio of crushed sand to improve quality and mix design of concrete using crushed sand. According to test results, it was found that nearly all the properties of crushed sand satisfied with the value recommended by KS. And it is recommended that FM of crushed sand should be lowered by improvement of manufacture system or grading adjustment should be used because FM of crushed sand was a bit higher.

Investigation on physical and mechanical properties of manufactured sand concrete

  • Haoyu Liao;Zongping Chen;Ji Zhou;Yuhan Liang
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.177-188
    • /
    • 2023
  • In the context of the shortage of river sand, two types of manufactured sand (MS) were used to partially replace river sand (RS) to design manufactured sand concrete (MSC). A total of 81 specimens were designed for uniaxial compression test and beam flexure test. Two parameters were considered in the tests, including the types of MS (i.e. limestone manufactured sand (LMS), pebble manufactured sand (PMS)) and the MS replacement percentage (i.e., 0%, 25%, 50%, 75%, 100%). The stress-strain curves of MSC were obtained. The effects of these parameters on the compressive strength, elastic modulus, peak strain, toughness and flexural strength were discussed. Additionally, the sensitivity of particle size distributions to the performance of MSC was evaluated based on the grey correlation analysis. The results showed that compared with river sand concrete (RSC), the rising slope of the stress-strain curves of limestone manufactured sand concrete (LMSC) and pebble manufactured sand concrete (PMSC) were higher, the descending phrase of LMSC were gentle but that of PMSC showed an opposite trend. The physical and mechanical properties of MSC were affected by the MS replacement percentage except the compressive strength of PMSC. When the replacement percentage of LMS and PMS were 50% and 25% respectively, the corresponding performances of LMSC and PMSC were better. In generally, when the replacement percentage of LMS and PMS were same, the comprehensive performance of LMSC were better than that of PMSC. The constitutive model and the equations for mechanical properties were proposed. The influence of particle ranging from 0.15 mm to 0 mm on the performance of MSC was lower than particle ranging from 4.75 mm to 0.15 mm but this influence should not be ignored.

Preliminary Study for Optimum Mix Design of Concrete Incorporating Waste Foundry Sand (폐주물사를 혼입한 콘크리트의 최적배합설계를 위한 기초적 연구)

  • Park, Je-Seon;Kim, Tae-Kyung
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.25-30
    • /
    • 1996
  • The waste foundry sand might be recycled in concrete, resulting in energy saving and environmental protection. An half Factorial Experiments were performed with the variables of W/C ratio, S/A, Sand/Waste foundry sand ratio and Slump as a preliminary study for optimum mix design of concrete. The results show that then W/C ratio is the most important factor to the concrete strength. The substitute of waste foundry sand up to 30% has little influence, saying that it can substitute the fine aggregate without damaging the concrete properties.

  • PDF

The Quality of Crushed Sand by Dry Production Process and Its Influence on Properties of Concrete (건식공정으로 생산한 부순 모래의 품질 및 콘크리트 특성에 미치는 영향)

  • Park, Cho-Bum;Baek, Chul-Woo;Kim, Ho-Su;Ryu, Deuk-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.415-423
    • /
    • 2006
  • As the shortage of natural & good quality aggregate for concrete, it is needed development of alternative aggregate. At the present time, the crushed sand is widely used among the alternation aggregate, and the usage of crushed sand will be increased more and more. Generally, crushed sud is produced with wet process in domestic, but some manufacturing companies which are handicapped with local restrict are produced by dry process. In this study, analyzing the facilities of dry crushed sand, the quality properties of dry crushed sand was done by Korean Industrial Standards. Based on the quality results of dry crushed sand, the experiment of concrete with the dry crushed sand which is substitute for sea sand was done. As the results of basic qualities, the amount of 0.08 mm sieve passing ratio was over KS criteria, and the fineness modulus was higher than sea sand, and the other physical properties of dry crushed sand was similar to sea sand. The results of concrete experiment, according to the substitutive ratio of dry crushed sand is increased, the slump and air content of concrete was decreased by increase of fine particles of dry crushed sand, and the unit weight content, compressive & tensile strength of concrete were increased on the contrary. The physical properties of concrete used dry crushed sand were showed same tendency without relation to W/B. Consequently, if the fine particle contents of dry crushed sand was lower, it is judged that dry crushed sand is no problem to use for concrete aggregate and the amount of usage will be increased.