• Title/Summary/Keyword: sampling rate of frequency

Search Result 275, Processing Time 0.028 seconds

An Effect of Sampling Rate to the Time and Frequency Domain Analysis of Pulse Rate Variability (샘플링율이 맥박변이도 시간 및 주파수 영역 분석에 미치는 영향)

  • Yang, Yoon La;Shin, Hangsik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1247-1251
    • /
    • 2016
  • This study aims to investigate the effect of sampling frequency to the time domain and frequency domain analysis of pulse rate variability (PRV). Typical time domain variables - AVNN, SDNN, SDSD, RMSSD, NN50 count and pNN50 - and frequency domain variables - VLF, LF, HF, LF/HF, Total Power, nLF and nHF - were derived from 7 down-sampled (250 Hz, 100 Hz, 50 Hz, 25 Hz, 20 Hz, 15 Hz, 10 Hz) PRVs and compared with the result of heart rate variability of 10 kHz-sampled electrocardiogram. Result showed that every variable of time domain analysis of PRV was significant at 25 Hz or higher sampling frequency. Also, in frequency domain analysis, every variable of PRV was significant at 15 Hz or higher sampling frequency.

Arbitrary Sampling Method for Nonlinearity Identification of Frequency Multipliers

  • Park, Young-Cheol;Yoon, Hoi-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • It is presented that sampling rates for behavioral modeling of quasi-memory less nonlinear devices can be far less than the Nyquist rate of the input signal. Although it has been believed that the sampling rate of nonlinear device modeling should be at least the Nyquist rate of the output signal, this paper suggests that far less than the Nyquist rate of the input signal can be applied to the modeling of quasi-memoryless nonlinear devices, such as frequency multipliers. To verify, a QPSK signal at 820 MHz were applied to a frequency tripler, whereby the device can be utilized as an up-converting mixer into 2.46 GHz with the aid of digital predistortion. AM-AM, AM-PM and PM-PM can be successfully measured regardless of sampling rates.

Perfect Reconstruction in Sub-Nyquist Nonuniform Sampling of Signals with Known upper Time-frequency Boundary (비 균일 표본화 신호의 완전 복구에 관한 연구)

  • 이희영;정현권
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.9-12
    • /
    • 2002
  • The problem of sub-Nyquist nonuniform sampling for the perfect reconstruction of signals with time-varying spectral contents is studied. The signals are assumed to have a known instantaneous bandwidth in time-frequency domain. As the function of time, the nonuniform sampling pattern of a given signal, that is, the instantaneous sampling frequency is determined by the observation of instantaneous bandwidth based on time-frequency analysis. The proposed sampling pattern guarantees the perfect reconstruction of nonuniform sampled signals under Nyquist-sampling rate in average.

  • PDF

Front-End Design for Underwater Communication System with 25 kHz Carrier Frequency and 5 kHz Symbol Rate (25kHz 반송파와 5kHz 심볼율을 갖는 수중통신 수신기용 전단부 설계)

  • Kim, Seung-Geun;Yun, Chang-Ho;Park, Jin-Young;Kim, Sea-Moon;Park, Jong-Won;Lim, Young-Kon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.166-171
    • /
    • 2010
  • In this paper, the front-end of a digital receiver with a 25 kHz carrier frequency, 5 kHz symbol rate, and any excess-bandwidth is designed using two basic facts. The first is known as the uniform sampling theorem, which states that the sampled sequence might not suffer from aliasing even if its sampling rate is lower than the Nyquist sampling rate if the analog signal is a bandpass one. The other fact is that if the sampling rate is 4 times the center frequency of the sampled sequence, the front-end processing complexity can be dramatically reduced due to the half of the sampled sequence to be multiplied by zero in the demixing process. Furthermore, the designed front-end is simplified by introducing sub-filters and sub-sampling sequences. The designed front-end is composed of an A/D converter, which takes samples of a bandpass filtered signal at a 20 kHz rate; a serial-to-parallel converter, which converts a sampled bandpass sequence to 4 parallel sub-sample sequences; 4 sub-filter blocks, which act as a frequency shifter and lowpass filter for a complex sequence; 4 synchronized switches; and 2 adders. The designed front-end dramatically reduces the computational complexity by more than 50% for frequency shifting and lowpass filtering operations since a conventional front-end requires a frequency shifting and two lowpass filtering operations to get one lowpass complex sample, while the proposed front-end requires only four filtering operation to get four lowpass complex samples, which is equivalent to one filtering operation for one sample.

Low-Sampling Rate UWB Channel Characterization and Synchronization

  • Maravic, Irena;Kusuma, Julius;Vetterli, Martin
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.319-327
    • /
    • 2003
  • We consider the problem of low-sampling rate high-resolution channel estimation and timing for digital ultrawideband (UWB) receivers. We extend some of our recent results in sampling of certain classes of parametric non-bandlimited signals and develop a frequency domain method for channel estimation and synchronization in ultra-wideband systems, which uses sub-Nyquist uniform sampling and well-studied computational procedures. In particular, the proposed method can be used for identification of more realistic channel models, where different propagation paths undergo different frequency-selective fading. Moreover, we show that it is possible to obtain high-resolution estimates of all relevant channel parameters by sampling a received signal below the traditional Nyquist rate. Our approach leads to faster acquisition compared to current digital solutions, allows for slower A/D converters, and potentially reduces power consumption of digital UWB receivers significantly.

A new criterion for determining the sampling rate of digital controller (디지털제어기의 제어주기 결정방법에 관한 연구)

  • 이준화;문홍주;정병근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.360-360
    • /
    • 2000
  • In this paper, a new criterion f9r determining the sampling rate of digital conroller is proposed. This paper will introduce a method fur determining the appropriate sampling rate of digital controller which can be substituted with the given analog controller, using phase margin and gain cross over frequency, not rising time or bandwidth of the closed-loop system. This method also guarantees performance of the system. Without exact modeling functions of the plant, abstracting those functions, this paper can achieve stability and aimed performance of the system, and this paper proved it with proper modeling functions.

  • PDF

A Timing Recovery Scheme for Variable Symbol Rate Digital M-ary QASK Receiver (가변 심볼율 MQASK(M-ary Quadrature Amplitude Keying) 디지털 수신기를 위한 타이밍 복원 방안)

  • Baek, Daesung;Lim, Wongyu;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.545-551
    • /
    • 2013
  • Timing recovery loop composed of the Timing Error Detector(TED), loop filter and resampler is widely used for the timing synchronization in MQASK receivers. Since TED is sensitive to the delay between the symbol period of the signal and sampling period, the output is averaged out when the symbol rate and sampling rate are quite different the recovery loop cannot work at all. This paper presents a sampling frequency discriminator (SRD), which detects the frequency offset of the sampling clock to the symbol clock of the MQASK data transmitted. Employing the SRD, the closed loop timing recovery scheme performs the frequency-aided timing acquisition and achieve the synchronization at extremely high sampling frequency offset, which can be used in variable symbol rate MQASK receivers.

An Efficient Method for Valid Bandpass Sampling Frequency in the Downconversion Process of N RF Signals (N개 RF 신호의 직접 하향 변환시에 요구되는 효율적인 대역통과 샘플링 주파수 획득 방법 제안)

  • Bae, Jung-Hwa;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1249-1256
    • /
    • 2006
  • This paper proposes, based on a bandpass sampling theory, a novel method to find valid sampling frequency range and minimum sampling rate with low computational complexity for downconversion of multiple bandpass radio frequency (RF) signals. Guard-bands or spacing between adjacent downconverted signal spectrums are also taken into consideration in determining sampling frequency for practical implementation. Moreover, we verify through comparison with other method that the proposed method has more advantageous properties.

Design of an Acoustic band Interpolator for Underwater Sensor Nodes (수중 센서 노드를 위한 음파 대역 인터폴레이터 설계)

  • Kim, Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.93-98
    • /
    • 2020
  • Research on underwater sensor networks is increasing due to such reasons as marine resource management, maritime disaster prediction and military protection. Many underwater sensor networks performs wireless communication using an acoustic sound wave band signal having a relatively low frequency. So the digital part of their modem can take charge of carrier band signal processing. To enable this, the sampling rate of the baseband band signal should be increased to a sampling rate at which carrier band signal processing is possible. In this paper, we designed a sampling rate increasing circuit based on a CIC interpolator for underwater sensor nodes. The CIC interpolator has a simple circuit structure. However, since the CIC interpolator has a large attenuation of the pass band and a wide transition band, an inverse sinc LPF is added to compensate for frequency response of the CIC interpolator. The proposed interpolator was verified in time domain and frequency domain using ModelSim and Matlab.

An Algorithm of Minimum Bandpass Sampling Selection with Guard-band Between Down-converted Adjacent IF signals (하향변환된 인접 IF신호간의 보호대역을 고려한 최소 대역통과 샘플링 주파수 선택 알고리즘)

  • Bae, Jung-Hwa;Cho, Jae-Wan;Ko, Yong-Chae;Cac, Tran Nguyen;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1286-1295
    • /
    • 2007
  • This paper proposes, based on a bandpass sampling theory, a novel method to find valid sampling frequency range and minimum sampling rate with low computational complexity for downconversion of N bandpass radio frequency(RF) signals, under application of all possible signal placements(full permutations) in a IF stage. Additionally, we have developed a complexity-reducing method to obtaine the opttimal and minimal sampling rate for supporting the user-wanted guard-band or spacing between adjacent downconverted signal spectrums. Moreover, we have verified through comparisons with other methods that the proposed methods have more advantageous properties.