• Title/Summary/Keyword: sampling points

Search Result 636, Processing Time 0.03 seconds

A Study on Class Participation Factors that Affect the Class Satisfaction : Focusing on Students of Dental Technology Department (수업 만족도에 영향을 미치는 수업참여 요인 : 치기공(학)과 학생을 중심으로)

  • Kwon, Soon-Suk
    • Journal of Technologic Dentistry
    • /
    • v.40 no.3
    • /
    • pp.135-150
    • /
    • 2018
  • Purpose: In this study, we aim to provide primary source of data for developing a learning program that enhances the students' learning by critically analyzing and adopting the effective class participation factors of the students. Methods: A questionnaire survey has been conducted from the beginning of May to the end of October, 2017. Subjects of the survey was the dental technology students living in W-city et al by random sampling method along with written informed consent. Out of 630 distributed questionnaires, 584 results were used for our analysis. Results: Firstly, the average score of the class participation of all the subjects was 3.08 points out of 5.0, which was broken down into class activity (3.53 points), passion about class (3.51 points), communication factors (2.88 points), class preparation (2.77 points), class extension (2.76 points). Secondly, statistically significant correlations were found between class participation and class satisfaction as shown in (p<.01). Class participation factors that affect the class satisfaction were class preparation(p<.001), class activities(p<.001), passion about class(p<.001), which reveals positive and meaningful results. Explanatory power of the model turned out 50.3%. Conclusion : Considering that class preparation, class activities, and passion about class played a key role in class satisfaction of the student, teachers need to be open minded to reflect the learners' personalized demands and needs in preparing and managing their class. Additionally should be in tandem that provides the students with various routes of class participation.

Reconstruction of parametrized model using only three vanishing points from a single image (한 영상으로부터 3개의 소실 점들만을 사용한 매개 변수의 재구성)

  • 최종수;윤용인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3C
    • /
    • pp.419-425
    • /
    • 2004
  • This paper presents a new method which is calculated to use only three vanishing points in order to compute the dimensions of object and its pose from a single image of perspective projection taken by a camera. Our approach is to only compute three vanishing points without informations such as the focal length and rotation matrix from images in the case of perspective projection. We assume that the object can be modeled as a linear function of a dimension vector v. The input of reconstruction is a set of correspondences between features in the model and features in the image. To minimize each the dimensions of the parameterized models, this reconstruction of optimization can be solved by standard nonlinear optimization techniques with a multi-start method which generates multiple starting points for the optimizer by sampling the parameter space uniformly.

Shape Optimization of a Trapezoidal Micro-Channel (사다리꼴 미세유로의 형상최적화)

  • Husain, Afzal;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2666-2671
    • /
    • 2007
  • This work presents microchannel heat sink shape optimization procedure using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

  • PDF

동영상 처리에 의한 목적물 추출 및 이동 방향과 이동 속도 계측에 관한 연구

  • 이종형;황병원
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1987.04a
    • /
    • pp.56-59
    • /
    • 1987
  • In this study the moving information extraction techniques of moving objects are processed digital imaqe data by sampling three frames in a fixed-bacqround two-dimensional line sequence image the brightness of interframe are compared to extract difference image and difference image are two level formed and neighber averged From neigbber averaged image the parameters for recoqnition of the object are the number of contorur pixels, the number of vertex points and the distance between the vertex points Agtercomparing the same object the moving distance obtained from the coordinate which is constructed by the bit processing of the digital data and the moving velocity is obtained from the moving distance and the time interval between the first andsecond sampled frames.

  • PDF

Shape Optimization of a Micro-Channel Using Kriging Model (크리깅 모델을 이용한 미세유로의 형상최적설계)

  • Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.733-740
    • /
    • 2007
  • Microchannel heat sink shape optimization is performed using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

Slicing a Point Cloud (점군 절단 알고리즘)

  • Park, Hyeong-T.;Chang, Min-H.;Park, Sang-C.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.2
    • /
    • pp.146-152
    • /
    • 2007
  • Presented in the paper is an algorithm to generate a section curve by slicing a point cloud which may include tens of thousands of points. Although there are couple of previous results, they are very sensitive on the density variations and local noising points. In the paper, three technological requirements are identified; 1) dominant point sampling, 2) avoiding local vibration, and 3) robustness on the density changes. To satisfy these requirements, we propose a new slicing algorithm which is based on a node-circle diagram. The algorithm has been implemented and tested with various examples.

Design Optimization of a Printed Circuit Heat Exchanger Using Surrogate Models (대리모델들을 이용한 인쇄형 열교환기의 최적설계)

  • Lee, Sang-Moon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.55-62
    • /
    • 2011
  • Shape optimization of a Printed circuit heat exchanger (PCHE) has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (3-D RANS) analysis and surrogate modeling techniques. The objective function is defined as a linear combination of effectiveness of the PCHE term and pressure drop in the cold channels of the PCHE. The cold channel angle and the ellipse aspect ratio of the cold channel are used as design variables for the optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results of three types of surrogate model are compared each other. The results of the optimizations indicate improved performance in friction loss but low performance in effectiveness than the reference shape.

DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION (반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계)

  • Lee, S.M.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.187-194
    • /
    • 2010
  • Shape optimization of an upper plenum of PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of eight of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

  • PDF

DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION (반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계)

  • Lee, S.M.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.16-23
    • /
    • 2010
  • Shape optimization of an upper plenum of a PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of height of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

Modeling of blend surfaces by Non Uniform B-spline surface patches (Non Uniform B-spline(NUB) 곡면에 의한 블랜드 곡면의 모델링)

  • Yoo, Woo-Sik;Jeong, Hoi-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.2
    • /
    • pp.95-100
    • /
    • 2000
  • Presented in this paper is a scheme for constructing ball rolling blends of a non-uniform B-spline surface(NUBS) patches. Ball rolling blending is a popular technique for blending between parametric surfaces. Along the "common edge" of a pair of "base surfaces" to be blended, a sequence of "ball positions" is sampled. The radius of the ball may vary along the line. At each sampling point, a ball center point and a pair of ball contact points are computed by applying a Jacobian inversion method. Using ball contact points, the constructing scheme of blend NUBS patches consists three steps; 1) determination of intermediate control vertices; 2) determination of boundary vectors; 3) determination of B-spline control vertices. The proposed blending scheme has been tested in a Omega CAM system and found to be working satisfactorily.

  • PDF