• Title/Summary/Keyword: sampling density

Search Result 481, Processing Time 0.02 seconds

Quincunx Sampling Method for Performance Improvement of 2D High-Density Wavelet Transformation (2차원 고밀도 이산 웨이브렛 변환의 성능 향상을 위한 Quincunx 표본화 기법)

  • Lim, Joong-Hee;Shin, Jong-Hong;Jee, Inn-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.179-191
    • /
    • 2013
  • The quincunx lattice is a non-separable sampling method in image processing. It treats the different directions more homogeneously and good frequency property than the separable two dimensional schemes. The high density discrete wavelet transformation is one that expands an N point signal to M transform coefficients with M > N. In two dimensions, this transform outperforms the standard discrete wavelet transformation in terms of shift-invariant. Although the transformation utilizes more wavelets, sampling rates are high costs. This paper proposed the high density discrete wavelet transform using quincunx sampling, which is a discrete wavelet transformation that combines the high density discrete transformation and non-separable processing method, each of which has its own characteristics and advantages. Proposed wavelet transformation can service good performance in image processing fields.

Density estimation of summer extreme temperature over South Korea using mixtures of conditional autoregressive species sampling model (혼합 조건부 종추출모형을 이용한 여름철 한국지역 극한기온의 위치별 밀도함수 추정)

  • Jo, Seongil;Lee, Jaeyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1155-1168
    • /
    • 2016
  • This paper considers a probability density estimation problem of climate values. In particular, we focus on estimating probability densities of summer extreme temperature over South Korea. It is known that the probability density of climate values at one location is similar to those at near by locations and one doesn't follow well known parametric distributions. To accommodate these properties, we use a mixture of conditional autoregressive species sampling model, which is a nonparametric Bayesian model with a spatial dependency. We apply the model to a dataset consisting of summer maximum temperature and minimum temperature over South Korea. The dataset is obtained from University of East Anglia.

Structural reliability estimation based on quasi ideal importance sampling simulation

  • Yonezawa, Masaaki;Okuda, Shoya;Kobayashi, Hiroaki
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.55-69
    • /
    • 2009
  • A quasi ideal importance sampling simulation method combined in the conditional expectation is proposed for the structural reliability estimation. The quasi ideal importance sampling joint probability density function (p.d.f.) is so composed on the basis of the ideal importance sampling concept as to be proportional to the conditional failure probability multiplied by the p.d.f. of the sampling variables. The respective marginal p.d.f.s of the ideal importance sampling joint p.d.f. are determined numerically by the simulations and partly by the piecewise integrations. The quasi ideal importance sampling simulations combined in the conditional expectation are executed to estimate the failure probabilities of structures with multiple failure surfaces and it is shown that the proposed method gives accurate estimations efficiently.

Assessing the Impact of Sampling Intensity on Land Use and Land Cover Estimation Using High-Resolution Aerial Images and Deep Learning Algorithms (고해상도 항공 영상과 딥러닝 알고리즘을 이용한 표본강도에 따른 토지이용 및 토지피복 면적 추정)

  • Yong-Kyu Lee;Woo-Dam Sim;Jung-Soo Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.267-279
    • /
    • 2023
  • This research assessed the feasibility of using high-resolution aerial images and deep learning algorithms for estimating the land-use and land-cover areas at the Approach 3 level, as outlined by the Intergovernmental Panel on Climate Change. The results from different sampling densities of high-resolution (51 cm) aerial images were compared with the land-cover map, provided by the Ministry of Environment, and analyzed to estimate the accuracy of the land-use and land-cover areas. Transfer learning was applied to the VGG16 architecture for the deep learning model, and sampling densities of 4 × 4 km, 2 × 4 km, 2 × 2 km, 1 × 2 km, 1 × 1 km, 500 × 500 m, and 250 × 250 m were used for estimating and evaluating the areas. The overall accuracy and kappa coefficient of the deep learning model were 91.1% and 88.8%, respectively. The F-scores, except for the pasture category, were >90% for all categories, indicating superior accuracy of the model. Chi-square tests of the sampling densities showed no significant difference in the area ratios of the land-cover map provided by the Ministry of Environment among all sampling densities except for 4 × 4 km at a significance level of p = 0.1. As the sampling density increased, the standard error and relative efficiency decreased. The relative standard error decreased to ≤15% for all land-cover categories at 1 × 1 km sampling density. These results indicated that a sampling density more detailed than 1 x 1 km is appropriate for estimating land-cover area at the local level.

The Study of Air Sampling Smoke Detector (공기흡입형 연기감지장치에 관한 연구)

  • 이복영;이병곤
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.86-91
    • /
    • 2003
  • Since the air stream in the room controlled by HVAC system affects on he expected response of conventional detectors which are designed in accordance with normal characteristics of air stream in the fire incident, unexpected operation time delay may occur in fire. In order to solve this problem and to improve sensitivity so that to initiate fire in its early stages for minimizing damage and protecting people, we studied and developed Air Sampling Smoke Detector. The Air Sampling Smoke Detector is a kind of active-type fire detection system. it draws air continuously from the protected area through an air sampling pipe network to the smoke density analyzer. This study presents smoke density analysing technique and air intake balancing technique through an air sampling pipe network. As a result of evaluating, Air Sampling Smoke Detector was much more sensitive than conventional smoke detectors that passively wait for smoke to reach them and was not affected by ambient airflow in the room by means of balanced air intake through the sampling holes.

The review on standard method of microplastics in soil and groundwater (토양, 지하수 중 미세플라스틱 분석법에 관한 고찰)

  • JongBeom Kwon;Hyeonhee Choi;Sunhwa Park
    • Analytical Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.174-188
    • /
    • 2024
  • This review summarized research trends regarding sample collection methods, pretreatment method, and types of analysis devices for microplastics (MPs) in soil and groundwater matrices. Soil sampling considers the selection of sampling location, depth, and volume. The typically sampling depth is within 15 cm (topsoil), and about 1 kg of mixed each sample. Among spot sampling and continuous flow sampling, groundwater sampling mainly used a continuous flow sampling, with collection rates 2 to 6 L/min in the range of 300~1,000 L, and followed by immediate on-situ filtration. Pretreatment method, applied to soil and groundwater, consist of organic digestion and density separation. In the organic digestion method, H2O2 is recommended among H2O2, acidic, alkaline, and enzymatic method. NaCl is primarily used as a reagent in density separation. However, depending on the density of MPs, other regents can be selectively used like ZnCl2, ZnBr2, and etc. Representative analysis device includes Fourier Transform Infrared (FTIR) and Raman spectroscopy for non-destructive analysis and Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) for destructive analysis. µ-FTIR and Raman can count MPs of larger than 10 and 1 ㎛, and analyze MPs materials. However, it is need to sufficiently remove interference, like organic matter, in spectroscopic analysis using essential pretreatment method. Py-GC/MS is being continuously researched because it doesn't require complex pretreatment method and allows quantitative analysis of specific materials.

A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response

  • Zhang, Yibo;Sun, Zhili;Yan, Yutao;Yu, Zhenliang;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.771-784
    • /
    • 2020
  • Reliability analysis techniques combining with various surrogate models have attracted increasing attention because of their accuracy and great efficiency. However, they primarily focus on the structures with continuous response, while very rare researches on the reliability analysis for structures with discontinuous response are carried out. Furthermore, existing adaptive reliability analysis methods based on importance sampling (IS) still have some intractable defects when dealing with small failure probability, and there is no related research on reliability analysis for structures involving discontinuous response and small failure probability. Therefore, this paper proposes a novel reliability analysis method called AGPC-IS for such structures, which combines adaptive Gaussian process classification (GPC) and adaptive-kernel-density-estimation-based IS. In AGPC-IS, an efficient adaptive strategy for design of experiments (DoE), taking into consideration the classification uncertainty, the sampling uniformity and the regional classification accuracy improvement, is developed with the purpose of improving the accuracy of Gaussian process classifier. The adaptive kernel density estimation is introduced for constructing the quasi-optimal density function of IS. In addition, a novel and more precise stopping criterion is also developed from the perspective of the stability of failure probability estimation. The efficiency, superiority and practicability of AGPC-IS are verified by three examples.

Prediction of Service Life of a Respirator Cartridge by the Occupational Environment(II) (작업현장의 환경조건에 따른 방독마스크 정화통의 수명예측(II))

  • 김기환;김덕기;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.72-78
    • /
    • 1996
  • The breakthrough curves of a sampling tube were studied to predict the service life of a respirator cartridge for organic vapors. The fixed bed adsorption model was applied to respirator cartridge and it's variables were calculated from tile experiment of sampling tube. By the experiment and simulation, it was possible to predict the service life of a respirator cartridge, however, not adequate at low $CCl_4$ concentration less than 700ppm and at high air humidify. The breakthrough curves of sampling tube were irregular compare to that of respirator cartridge due to .packing density.

  • PDF

Geostatistics for Bayesian interpretation of geophysical data

  • Oh Seokhoon;Lee Duk Kee;Yang Junmo;Youn Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.340-343
    • /
    • 2003
  • This study presents a practical procedure for the Bayesian inversion of geophysical data by Markov chain Monte Carlo (MCMC) sampling and geostatistics. We have applied geostatistical techniques for the acquisition of prior model information, and then the MCMC method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter. This approach provides an effective way to treat Bayesian inversion of geophysical data and reduce the non-uniqueness by incorporating various prior information.

  • PDF

Sequential sampling method for monitoring potato tuber moths (Phthorimaea operculella) in potato fields

  • Jung, Jae-Min;Byeon, Dae-hyeon;Kim, Eunji;Byun, Hye-Min;Park, Jaekook;Kim, Jihoon;Bae, Jongmin;Kim, Kyutae;Roca-Cusachs, Marcos;Kang, Minjoon;Choi, Subin;Oh, Sumin;Jung, Sunghoon;Lee, Wang-Hee
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.615-624
    • /
    • 2020
  • An effective sampling method is necessary to monitor potato tuber moths (Phthorimaea operculella) because they are the biggest concern in potato-cultivating areas. In this study, a sequential sampling method was developed based on the results of field surveys of potato tuber moths in South Korea. Potato tuber moths were collected in fields cultivating potatoes at six sites, and their spatial distribution was investigated using the Taylor power law. The optimal sampling size and cumulative number of potato tuber moths in traps to stop sampling were determined based on the spatial distribution pattern and mean density of the collected potato tuber moths. Finally, the developed sampling method was applied to propose a control action, and its sampling efficiency was compared with that of the traditional sampling method using a binomial distribution. The potato tuber moths tended to aggregate; the optimal number was approximately 5 - 16 traps for sampling, and the number varied with the mean density of potato tuber moths according to the sampling sites. In addition, one, two, and three sites might require the following actions: Continued sampling, control, and no control, respectively. Sampling with the binomial distribution showed the minimum sample size was 12 when considering the economic threshold level. Here, we propose an effective sampling method that can be applied for future monitoring and field surveys of potato tuber moths in South Korea.