• Title/Summary/Keyword: sample diameter to the bar diameter

Search Result 10, Processing Time 0.027 seconds

Study of dynamic mechanical behavior of aluminum 7075-T6 with respect to diameters and L/D ratios using Split Hopkinson Pressure Bar (SHPB)

  • Kim, Eunhye;Changani, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.857-869
    • /
    • 2015
  • The aluminum 7075-T6 is known as an alloy widely used in aircraft structural applications, which does not exhibit strain rate sensitivity during dynamic compressive tests. Despite mechanical importance of the material, there is not enough attention to determine appropriate sample dimensions such as a sample diameter relative to the device bar diameter and sample length to diameter (L/D) ratio for dynamic tests and how these two parameters can change mechanical behaviors of the sample under dynamic loading condition. In this study, various samples which have different diameters of 31.8, 25.4, 15.9, and 9.5 mm and sample L/D ratios of 2.0, 1.5, 1.0, 0.5, and 0.25 were tested using Split Hopkinson Pressure Bar (SHPB), as this testing device is proper to characterize mechanical behaviors of solid materials at high strain rates. The mechanical behavior of this alloy was examined under ${\sim}200-5,500s^{-1}$ dynamic strain rate. Aluminum samples of 2.0, 1.5 and 1.0 of L/D ratios were well fitted into the stress-strain curve, Madison and Green's diagram, regardless of the sample diameters. Also, the 0.5 and 0.25 L/D ratio samples having the diameter of 31.8 and 25.4 mm followed the stress-strain curve. As results, larger samples (31.8 and 25.4 mm) in diameters followed the stress-strain curve regardless of the L/D ratios, whereas the 0.5 and 0.25 L/D ratios of small diameter sample (15.9 and 9.5 mm) did not follow the stress-strain diagram but significantly deviate from the diagram. Our results indicate that the L/D ratio is important determinant in stress-strain responses under the SHPB test when the sample diameter is small relative to the test bar diameter (31.8 mm), but when sample diameter is close to the bar diameter, L/D ratio does not significantly affect the stress-strain responses. This suggests that the areal mismatch (non-contact area of the testing bar) between the sample and the bar can misrepresent mechanical behaviors of the aluminum 7075-T6 at the dynamic loading condition.

Probing of Steel Bar Inside Mortar Specimens Using Electromagnetic Wave Method (전자기파를 이용한 모르타르 시편 내 철근탐사)

  • 김우석;박경현;임홍철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.663-666
    • /
    • 1999
  • Ground Penetrating Radar (GPR) attached with 1 GHz center frequency antenna has been used to measure a dielectric constant of mortar, and to detect and locate a steel bar embedded inside laboratory size mortar specimens at various depth. Mortar specimens are made for the measurements with the dimensions of 100cm (width)$\times$100cm (length)$\times$14cm (depth). Each specimen has a 13mm diameter D13 steel bar at 2, 4, 6, 8, 10 and 12cm depth. In this paper, results of radar measurments are provided with a sample output, which successfully located the bar. It has been found that the reflected wave of the steel bar interacts with that of surface when the steel bar has the close distance to the surface.

  • PDF

Measurements and Data Interpretation for the Detection of Steel Bars and Delamination inside Concrete (콘크리트내의 철근 및 공동탐사를 위한 측정과 분석)

  • Rhim, Hong-Chul;Park, Ki-Joon;Lee, Soong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.305-313
    • /
    • 2000
  • To determine detection capabilities of locating steel bars and delamination inside concrete, commercially available nondestructive testing (NDT) equipments have been tested. The equipments include two radar systems and two electromagnetic method systems. The inclusions are a 19 mm diameter steel bar and 50 mm thick delamination embedded at different cover depths from the surface of concrete specimens. For the steel bar, attempts were made to determine the size of the bars by changing the diameter of the bars. A sample result of measuring horizontal spacing between doubly reinforced bars is presented in this paper. Experimental results on various measurement cases are discussed. Application of numerical modeling technique for the simulation of radar measurements and improved output display of radar measurements are also presented.

  • PDF

Rock Fragmentation Assessment of a Drill Bit by Hopkinson Bar Percussion Test (홉킨스바 타격시험을 통한 드릴비트의 암반파쇄 분석)

  • Kwon, Ki-Beom;Song, Chang-Heon;Park, Jin-Young;Shin, Dae-Young;Cho, Jung-Woo;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.42-53
    • /
    • 2013
  • The percussion rate and spacing of the button of drill bit are very important in maximizing the drilling efficiency. Therefore, a series of percussion tests using Hopkinson bar system was carried out to assess the fragmentation performance against the beat rate and spacing of a drill bit. First, single percussion test complemented with numerical simulation was performed to analyze rock fragmentation phenomenon and to describe the fragmentation process. Next, multiple percussion test that repetitively strike the rock sample moving at predetermined rate was carried out to predict drilling efficiency against the button spacing. After the tests, the fragmented volume of the rock was measured by laser scanner and the drilling performance was analyzed using the calculated percussive energy and measured negative volume. Based on the results, the single impact performance of drill bit with 102 mm diameter was predicted.

A Study of Dispersion Characteristics of Sunsik Using Fluidized-Bed Granulator (유동층 과립기를 이용한 선식의 분산 특성)

  • Kim, Gorae;Hwang, Yunhee;Lee, Seokhoon
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.267-272
    • /
    • 2017
  • To improve dispersibility of cereal powder without additives, granulation of cereal powder was conducted using fluidized-bed granulator. Operation condition was sample 300 g, internal temperature $40^{\circ}C$, ventilation speed $30-90m^3/h$, inlet temperature $90^{\circ}C$ and spray pressure 2.5 bar. The amount of distilled water (20-45%) as binder, granulation time (10-15 min) and drying time (3-10 min) were controlled. Mean diameter over volume (Brouckere mean, $D_{4,3}$) was increased from $123{\mu}m$ to $263{\mu}m$ and dispersibility was improved from 73% to 92.25% at experiment conditions. Wettability (wetting time) was drastically decreased from 5,000 second to 7 second. Granulation of cereal powder did not affect sinkability and mean diameter over volume as wet analysis was about the same between raw and granulated cereals. Such phenomenon means that granulation with only water as binder enables cereal powder to disperse in water or milk without rapid sedimentation.

Machinability Evaluation of Sapphire Glass Using Powder Blasting (파우더 블라스팅을 이용한 사파이어 글라스의 가공성 평가)

  • Kang, Eun Ji;Kim, Jung Ho;Jang, Ho Su;Park, Dong Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.224-230
    • /
    • 2015
  • In this study, the machinability of sapphire glass is tested using the powder blasting method under various blasting conditions. The thickness and diameter of the sapphire glass samples were 0.4 mm and 50.8 mm (2 inch), respectively. The machined patterns from each sample were a circle, a square, and a rectangle. The powder we used was GC #400 and #800. The blasting pressures of the powders were 2, 4, and 6 bar. The scanning time of the nozzle was 20 and the scanning speeds of the nozzle were 80, 100, and 120 mm/s. Experimental results showed that machining depths increased in proportion to blasting pressure. The machining depth of GC #800 was much higher than that of GC #400, while surface roughness was worst with GC #400. These results imply that the blasting pressure and size of the blasting powder are the most important parameters for machining sapphire glass.

THE PHYSCIAL PORPERTIES OFY Y2O3-CONTAINING GLASS INFILTRATED ALUMINA CORE MADE BY PRESSURELESS POWDER PACKING METHOD (무가압 분말충전 알루미나에 이트리아를 함유한 붕규산염 유리를 침투시킨 코아 도재의 물성)

  • Whang, Seung-Woo;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.221-243
    • /
    • 1997
  • The objective of this study was to characterize the mechanical properties of $Y_{2}O_{3}$-containing glass infiltrated ceramic core material, which was made by pressureless powder packing method. A pure alumina powder with a grain size of about $4{\mu}m$ was packed without pressure is silicon mold to form a bar shaped sample, and applied PVA solution as a binder. Samples were sinterd at $1350^{\circ}C$ for 1 hour. After cooling, $Y_{2}O_{3}$-containing glass($SiO_{2},\;Y_{2}O_{3},\;B_{2}O_{3},\;Al_{2}O_{3}$, ect) was infiltrated to the sinterd samples at $1300^{\circ}C$ for 2 hours and cooled. Six different proportions $Y_{2}O_{3}$ of were used to know the effect of the mismatch of the thermal expansion coefficient between alumina powder and glass. The samples were ground to $3{\times}3{\times}30$ mm size and polished with $1{\mu}m$ diamond paste. Flexural strength, fracture toughness, hardness and other physical properties were obtained, and the fractured surface was examined with SEM and EPMA. Ten samples of each group were tested and compared with In-Ceram(tm) core materials of same size made in dental laboratory. The results were as follows : 1. The flexural strengths of group 1 and 3 were significantly not different with that of In-Ceram, but other experimental groups were lower than In-Ceram. 2. The shrinkage rate of samples was 0.42% after first firing, and 0.45% after glass infiltration. Total shrinkage rate was 0.87%. 3. After first firing, porosity rate of experimental groups was 50%, compared with 22.25% of In-Ceram. After glass infiltration, porosity rate of experimental groups was 2%, and 1% in In-Ceram. 4. There was no statistical difference in hardness between two materials tested, but in fracture toughness, group 2 and 3 were higher than In-Ceram. 5. The thermal expansion coefficients of experimental groups were varied to $4.51-5.35{\times}10^{-6}/^{\circ}C$ according to glass composition, also the flexural strengths of samples were varied. 6. In a view of SEM, many microparticles about $0.5{\mu}m$ diameter and $4{\mu}m$ diameter were observed in In-Ceram. But in experimental group, the size of most particles was about $4{\mu}m$, and a little microparticles was observed. The results obtained in this study showed that the mismatch of the thermal expansion coefficients between alumina powder and infiltrated glass affect the flexural strength of alumin/glass composite. The $Y_{2}O_{3}$-containing glass infiltrated ceramic core made by powder packing method will takes less time and cost with sufficient flexural strength similar to all ceramic crown made with slip casting technique.

  • PDF

Homogeneity of Microstructure and Mechanical Properties of Ultrafine Grained OFHC Cu Bars Processed by ECAP (ECAP 가공에 의해 제조된 초미세립 OFHC Cu 봉재의 미세조직 및 기계적 특성의 균질성)

  • Ji, Jung Hoon;Park, Lee-Ju;Kim, Hyung Won;Hwang, Si Woo;Lee, Chong Soo;Park, Kyung Tae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.474-487
    • /
    • 2011
  • Bars of OFHC Cu with the diameter of 45 mm were processed by equal channel angular pressing up to 16 passes via route $B_c$, and homogeneity of their microstructures and mechanical properties was examined at every four passes which develop the equiaxed ultrafine grains. In general, overall hardness, yield strength and tensile strength increased by 3, 7, and 2 times respectively compared with those of unECAPed sample. Cross-sectional hardness exhibited a concentric distribution. Hardness was the highest at the center of bar and it decreased gradually from center to surface. After 16 passes, overall hardness decreased due to recovery and partial recrystallization. Regardless of the number of passage, yield strength and tensile strength were quite uniform at all positions, but elongation showed some degree of scattering. At 4 passes, coarse and ultrafine grains coexisted at all positions. After 4 passes, uniform equiaxed ultrafine grains were obtained at the center, while uniform elongated ultrafine grains were manifested at the upper half position. At the lower half position, grains were equiaxed but its size were inhomogeneous. It was found that inhomogeneity of grain morphology and grain size distribution at different positions are to be attributed to scattering in elongation but they did not affect strength. The present results reveal the high potential of practical application of equal channel angular pressing on fabrication of large-sized ultrafine grained bars with quite homogeneous mechanical properties.

Development and Validation of the GPU-based 3D Dynamic Analysis Code for Simulating Rock Fracturing Subjected to Impact Loading (충격 하중 시 암석의 파괴거동해석을 위한 GPGPU 기반 3차원 동적해석기법의 개발과 검증 연구)

  • Min, Gyeong-Jo;Fukuda, Daisuke;Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Recently, with the development of high-performance processing devices such as GPGPU, a three-dimensional dynamic analysis technique that can replace expensive rock material impact tests has been actively developed in the defense and aerospace fields. Experimentally observing or measuring fracture processes occurring in rocks subjected to high impact loads, such as blasting and earth penetration of small-diameter missiles, are difficult due to the inhomogeneity and opacity of rock materials. In this study, a three-dimensional dynamic fracture process analysis technique (3D-DFPA) was developed to simulate the fracture behavior of rocks due to impact. In order to improve the operation speed, an algorithm capable of GPGPU operation was developed for explicit analysis and contact element search. To verify the proposed dynamic fracture process analysis technique, the dynamic fracture toughness tests of the Straight Notched Disk Bending (SNDB) limestone samples were simulated and the propagation of the reflection and transmission of the stress waves at the rock-impact bar interfaces and the fracture process of the rock samples were compared. The dynamic load tests for the SNDB sample applied a Pulse Shape controlled Split Hopkinson presure bar (PS-SHPB) that can control the waveform of the incident stress wave, the stress state, and the fracture process of the rock models were analyzed with experimental results.

Brazing characteristics of $ZrO_2$ and Ti-6Al-4V brazed joints with increasing temperature (브레이징 온도 변화에 따른 $ZrO_2$와 Ti-6Al-4V의 접합 특성)

  • Kee, Se-Ho;Park, Sang-Yoon;Heo, Young-Ku;Jung, Jae-Pil;Kim, Won-Joong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.169-175
    • /
    • 2012
  • Purpose: In this study, brazing characteristics of $ZrO_2$ and Ti-6Al-4V brazed joints with increasing temperature were investigated. Materials and methods: The sample size of the $ZrO_2$ was $3mm{\times}3mm{\times}3mm$ (thickness), and Ti-6Al-4V was $10mm(diameter){\times}5mm(thickness)$. The filler metal consisted of Ag-Cu-Sn-Ti was prepared in powder form. The brazing sample was heated in a vacuum furnace under $5{\times}10^{-6}$ torr atmosphere, while the brazing temperature was changed from 700 to $800^{\circ}C$ for 30 min. Results: The experimental results shows that brazed joint of $ZrO_2$ and Ti-6Al-4V occurred at $700-800^{\circ}C$. Brazed joint consisted of Ag-rich matrix and Cu-rich phase. A Cu-Ti intermetallic compounds and a Ti-Sn-Cu-Ag alloy were produced along the Ti-6Al-4V bonded interface. Thickness of the reacted layer along the Ti-6Al-4V bonded interface was increased with brazing temperature. Defect ratios of $ZrO_2$ and Ti-6Al-4V bonded interfaces decreased with brazing temperature. Conclusion: Thickness and defect ratio of brazed joints were decreased with increasing temperature. Zirconia was not wetting with filler metal, because the reaction between $ZrO_2$ and Ti did not occur enough.