• 제목/요약/키워드: salt tolerant

검색결과 202건 처리시간 0.03초

Isolation and Characterization of Salt Tolerant Mutations in Budding Yeast Saccharomyces cerevisiae

  • Kim, Yung-Jin;Seo, Soo-Boon;Park, Shi-Young
    • Journal of Life Science
    • /
    • 제9권1호
    • /
    • pp.22-25
    • /
    • 1999
  • In order to study the mechanism for the adaptation to salt stress, we mutagenized budding yeast Saccharomyces cerevisiae with Ethylmethane sulfonate, and isolated salt-tolerant mutants. Among the salt-tolerant mutants, two strains exhibit additional temperature sensitive phenotype. Here, we report that these two salt-tolerant mutants are specific to {TEX}$Na^{+}${/TEX} rather than general osmotic stress. These mutant strains may contain mutations in the genes involved in {TEX}$Na^{+}${/TEX} home-ostasis.

  • PDF

Soil salinity shifts the community structure and diversity of seed bacterial endophytes of salt-sensitive and tolerant rice cultivars

  • Walitang, Denver I.;Ahmed, Shamim;Jeon, Sunyoung;Pyo, Chaeeun;Sa, Tongmin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.244-244
    • /
    • 2017
  • Soil salinity due to accumulation of salts particularly sodium chloride affects agricultural lands and their vegetation. Generally, rice is a moderately sensitive plant with some cultivars with varying tolerance to salinity. Though there are physiological differences between salt-sensitive and salt-tolerant rice cultivars, both are still affected especially during high salinity and prolonged exposure. This also ultimately affects their indigenous bacterial endophytes particularly those that inhabit the rice seed endosphere. This study investigates the dynamic structure of seed bacterial endophytes of salt-sensitive and tolerant rice cultivars grown in different levels of soil salinity. Endophytic bacterial diversity was studied Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Results revealed a very interesting pattern of diversity and shifts in community structure of bacterial endophytes in the rice seeds. There is a general decrease in diversity for the salt-sensitive rice cultivar, IR29 as soil salinity increases. For the salt-tolerant cultivars, IC32 and IC37, diversity interestingly increased at moderate salinity then decreased at high soil salinity. The patterns of community structure is also strikingly different for the salt-sensitive and salt-tolerant rice cultivars. IR29 has a more even distribution of abundance, but under soil salinity, the community shifted where Curtobacterium, Pantoea, Flavobacterium and Microbacterium become the more dominant bacterial communities. For IC32 and IC37, the dominant bacterial groups under normal stress conditions were also the dominant bacterial groups during salt stress conditions. Their seed bacterial community is dominated by endophytes belonging to Microbacterium, Flavobacterium, Pantoea, Kosakonia and Enterobacter. Stenotrophomonas and Xanthomonas have not changed in terms of abundance under different salinity stress level in the salt-sensitive and salt-tolerant rice cultivars. This study showed that soil salinity greatly influenced the seed bacterial communities of rice seeds irrespective of their physiological tolerance to salinity.

  • PDF

배배양에 의한 인삼우수계통으로부터 염류 Stress 내성 계통의 선발 (Selection of Ginseng Superior Lines Tolerant to Salt Stress Through Zygotic Embryo Culture)

  • 양덕춘;윤영상;김무성
    • 한국자원식물학회지
    • /
    • 제17권3호
    • /
    • pp.257-264
    • /
    • 2004
  • Selection of stress-tolerant ginseng lines in fields is very difficult because it is almost impossible to control properly the environmental conditions of soil. On the contrary, it can be studied with ease to search for stress-tolerant ginseng lines through in vitro culture because of easy manipulation of stress conditions. This study was conducted for the selection of ginseng pure lines tolerant to salt stress. Murashige & Skoog(MS) media with 2.5 folds of KNO$_3$, NH$_4$NO$_3$, MgSO$_4$.7$H_2O$, KH$_2$PO$_4$, and CaC1$_2$.2$H_2O$ was established for the selection of ginseng pure lines tolerant to salt stress in vitro. Among 88 ginseng pure lines bred by Korea Ginseng and Tobacco Research Institute, Punggi Hwangsuk, 78093, 82886, 78135, 86024 and KG104 lines was tolerant to salt stress. For the stable production of quality Korean ginseng, genetic tolerance to salt stress is one of important factors since relatively high salt concentrations in the ginseng nursery soil environment of Korea. Ginseng inbred pure lines were tested for their tolerance to salt stress through in vitro culture technique.

Isolation of Gamma-Induced Rice Mutants with Increased Tolerance to Salt by Anther Culture

  • Lee, In-Sok;Kim, Dong-Sub;Hyun, Do-Yoon;Lee, Sang-Jae;Song, Hi-Sup;Lim, Yong-Pyo;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • 제5권1호
    • /
    • pp.51-57
    • /
    • 2003
  • Doubled haploids have long been recognized as a valuable tool in plant breeding since it not only offers the quickest method of advancing heterozygous breeding lines to homozygosity, but also increased the selection efficiency over conventional procedures due to better discrimination between genotypes within any one generation. Salt tolerant mutants were obtained in rice the variety, 'Hawsungbyeo', through in vitro mutagenesis of in vitro cultured anther-derived calli. Various doses (30, 50, 70 and 90 Gy) of gamma ray were applied to investigate the effect of radiation on callus formation on medium containing 1% NaCl, green plant regeneration, frequency of selected doubled haploid mutants and of the salt tolerant screen. It was demonstrated that the dose of 30 and 50 Gy gamma rays had significant effects on callus formation, regeneration and selection of salt tolerance. No tolerant lines were obtained from non-mutagenized cultures. From gamma ray irradiated cultures, five tolerant lines ($M_2$generation) at germination stage and 13 tolerant lines ($M_3$genoration) at seedling stage were obtained. The frequency of salt tolerant mutants indicates that anther culture applied in connection with gamma rays is an effective way to improve salt tolerance.

Selection and Genetic Relationship of Salt Tolerant Rice Mutants by in vitro Mutagenesis

  • Song, Jae Young;Kim, Dong Sub;Lee, Myung-Chul;Lee, Kyung Jun;Kim, Jin-Baek;Kim, Sang Hoon;Yun, Song Joong;Kang, Si-Yong
    • 방사선산업학회지
    • /
    • 제4권4호
    • /
    • pp.307-312
    • /
    • 2010
  • Plants have evolved physiological, biochemical and metabolic mechanisms to increase their survival under the adverse conditions. This present study has been performed to select salt-tolerant rice mutant lines through in vivo and in vitro mutagenesis with gamma-rays. For the selection of the salt-tolerant rice mutants, we conducted three times of selection procedure using 1,500 gamma ray mutant lines resulted from an embryo culture of the original rice cv. Dongan (wild-type, WT): first, selection in the a nutrient solution with 171 mM NaCl; second, selection under in vitro condition with 171 mM NaCl; and third, selection in a reclaimed saline land. Based on a growth comparison of the entries, out of the mutant lines, two putative 2 salt tolerant (ST) rice mutant lines, ST-87 and ST-301, were finally selected. The survival rate of the WT, ST-87 and ST-301 were 36.6%, 60% and 66.3% after 7 days in 171 mM NaCl treatment, respectively. The WT and two salt tolerant mutant lines were used to analyze their genetic variations. A total of 21 EcoRI and Msel primer combinations were used to analyze the genetic relationship of among the two salt-tolerant lines and the WT using the ABI3130 capillary electrophoresis system. In the AFLP analysis, a total of 1469 bands were produced by the 21 primer combinations, and 700 (47.6%) of them were identified as having polymorphism. The genetic similarity coefficients were ranged from 0.52 between the ST-87 and WT to 0.24 between the ST-301 and the WT. These rice mutant lines will be used as a control plot for physiological analysis and genetic research on salt tolerance.

Cross-Tolerance and Responses of Antioxidative Enzymes of Rice to Various Environmental Stresse

  • Kuk, Yong-In;Shin, Ji-San
    • 한국작물학회지
    • /
    • 제52권3호
    • /
    • pp.264-273
    • /
    • 2007
  • In order to examine the cross-tolerance of two chilling-tolerant cultivars (Donganbyeo and Heukhyangbyeo) and two chilling-susceptible cultivars (Hyangmibyeo and Taekbaekbyeo) to salt, paraquat, and drought, changes of physiological response and antioxidant enzymes were investigated. The seedlings were grown in a growth chamber until the 4-leaf stage. The seedlings were exposed to chilling at $5^{\circ}C$ for 3 days. For drought treatment, the seedlings were subjected to drought by withholding water from plants for 5 days. For paraquat study, plants were sprayed with $300{\mu}M$ paraquat. For the salt stress, the seedlings were transferred to the Hoagland's nutrient solution containing 0.6% (w/v) NaCl for 4 days. Chilling-tolerant cultivars showed cross-tolerant to other stresses, salt, paraquat, and drought in physiological parameters, such as leaf injury, chlorophyll a fluorescence, and lipid peroxidation. The baseline levels of antioxidative enzyme activities, catalase (CAT) and peroxidase (POX) activities in chilling-tolerant cultivars were higher than in the chilling-susceptible cultivars. However, there were no differences in ascorbate peroxidase (APX) and glutathione reductase (GR) activities between chilling-tolerant and -susceptible cultivars in untreated control. CAT activity in chilling-tolerant cultivars was higher than that in chilling-susceptible cultivars during chilling, salt, and drought treatments, but not during paraquat treatment. However, other antioxidative enzymes, APX, POX, and GR activities showed no significant differences between chilling-tolerant and -susceptible cultivars during chilling, salt, paraquat, and drought treatments. Thus, it was assumed that CAT contribute to cross-tolerance mechanism of chilling, salt, and drought in rice plants.

염류처리에 따른 벼의 개엽광합성에 관한 연구 (Studies on the Leaf Photosynthesis of Salt-Stressed Rice Cultivars)

  • 조동하
    • 한국자원식물학회지
    • /
    • 제7권1호
    • /
    • pp.97-101
    • /
    • 1994
  • The effects of NaCl salinity on the leaf photosynthesis and water relation of two cultivars of rice(Oryza sativa L.) , the salt-tolerant cultivar Seohae and the salt-senstive cultivar Iri-380 were exam-ined. Two cultivars of rice were grown for 14 days in nutrient solution at SOmM NaCl. Comparing theieaf Na content of two cultlvars, Seohae showed high accumulation of Na content in the leaf blade, while Iri-380 showed low. The Na content in leaf blade reduced the rate of leaf photosynthesis. Salt-tolerant cultivar Seohae was less decreased the rate of leaf photosynthesis than salt- sensitive cultivarIri-380. And Seohae showed larger decreased the osmotic potential in the leaves than Iri-380. This in-dicates that in the salt-tolerant cultivar, osmotic adjustment is developed under saliniEation.

  • PDF

Characterizing Salt Stress Response in a Rice Variety and Its Salt Tolerant Lines Derived from In Vitro Mutagenesis

  • Lee In Sok;Kim Dong Sub;Kang Si Yong;Wi Seung Gon;Jin Hua;Yun PiI-Yong;Lim Yong Pyo;Lee Young Il
    • Journal of Plant Biotechnology
    • /
    • 제6권4호
    • /
    • pp.205-212
    • /
    • 2004
  • The objectives were to compare the salt tolerance levels in the parental rice cultivar, Dongjinbyeo, and induced mutagenesis derived its lines for plant height, MDA, ATPase, POD, and 2-dimensional protein electrophoresis pattern in NaCl-containing hydroponic nutrient solutions. Rice plants isolated from a population of rice (Oryza sativa L. cv. Dongjinbyeo) mutation lines, which were generated in combination with in vitro selection and gamma-ray, exhibited salt tolerance. Line No. 18 had the longest plant, whereas NaCl-sensitive line (No. 25) had the shortest plant. The parent, and the sensitive line showed severe damage from salt stress. Tolerant lines (No. 18, 50) had a lower malonaldehyde (MDA) content than the sensitive one (Dongjinbyeo, No. 25) during salt stress. Several proteins showed significant quantitative variation through 2DE; phosphoribulokinase, peroxidase, oxygen evolving enhancer 1 and the $H^+-ATPase$, which are known to be involved in salt tolerance. The effect of salt on peroxidase and $H^+-ATPase$ activity in the seedlings of two groups with contrasting genotypes of rice was studied. A greater activity was recorded in the tolerant lines as compared to the sensitive ones (P<0.05, Duncan's test). The results indicate that salt tolerant lines expressed more salt stress-inducible proteins associated with salt tolerance than the sensitive lines during salt stress.

염내성 세균에 의한 보리의 염 스트레스 내성 촉진 (Enhancement of Salt Stress Tolerance of Hordeum vulgare. L by Salt-Tolerant Bacteria)

  • 이슬;;;송형근;조유성;이지훈
    • 한국환경농학회지
    • /
    • 제40권4호
    • /
    • pp.345-352
    • /
    • 2021
  • BACKGROUND: Salinity is one of the major limiting factors in agriculture that affect the growth and productivity of crops. It is economically difficult to artificially purify the soil affected by salt. Therefore, the use of plant growth-promoting bacteria (PGPB) in an effort to reduce stress caused by salt is emerging as a cost-effective and environment-friendly method. In this study, the purpose was to isolate the salt-tolerant bacteria from the rhizosphere soil and identify their ability to promote plant growth under salt stress condition. METHODS AND RESULTS: The isolates KST-1, KST-2, AST-3, and AST-4 that showed plant growth-promoting activity for barley in salt conditions were close to Bacillus cereus (KST-1, KST-2, and AST-4) and Bacillus thuringiensis (AST-3) and showed high salt tolerance up to 7% of additional NaCl to the media. When inoculated to barley, the strains had only minor effect on the length of the barley. However, the concentrations of chlorophyll in the barley leaves were found to be higher from the bacteria-inoculated pots than those from the uninoculated control. In particular, the chlorophyll concentration in Bacillus cereus AST-4 experiment was 5.45 times higher than that of the uninoculated control under the same experimental condition. CONCLUSION(S): The isolated salt-tolerant bacteria were found to influence on chlorophyll concentration of the barley. As represented by the strain AST-4, microbes may suggest a cost-effective and environmentally benign method to alleviate salt stress of crops cultivated in salt-accumulated soils such as reclaimed lands.

Biological Inoculant of Salt-Tolerant Bacteria for Plant Growth Stimulation under Different Saline Soil Conditions

  • Wang, Ru;Wang, Chen;Feng, Qing;Liou, Rey-May;Lin, Ying-Feng
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권3호
    • /
    • pp.398-407
    • /
    • 2021
  • Using salt-tolerant bacteria to protect plants from salt stress is a promising microbiological treatment strategy for saline-alkali soil improvement. Here, we conducted research on the growth-promoting effect of Brevibacterium frigoritolerans on wheat under salt stress, which has rarely been addressed before. The synergistic effect of B. frigoritolerans combined with representative salt-tolerant bacteria Bacillus velezensis and Bacillus thuringiensis to promote the development of wheat under salt stress was also further studied. Our approach involved two steps: investigation of the plant growth-promoting traits of each strain at six salt stress levels (0, 2, 4, 6, 8, and 10%); examination of the effects of the strains (single or in combination) inoculated on wheat in different salt stress conditions (0, 50, 100, 200, 300, and 400 mM). The experiment of plant growth-promoting traits indicated that among three strains, B. frigoritolerans had the most potential for promoting wheat parameters. In single-strain inoculation, B. frigoritolerans showed the best performance of plant growth promotion. Moreover, a pot experiment proved that the plant growth-promoting potential of co-inoculation with three strains on wheat is better than single-strain inoculation under salt stress condition. Up to now, this is the first report suggesting that B. frigoritolerans has the potential to promote wheat growth under salt stress, especially combined with B. velezensis and B. thuringiensis.