• Title/Summary/Keyword: salt removal

Search Result 285, Processing Time 0.026 seconds

Effect of Hvperkalemia and Hypothermia on Endothelium-dependent Relaxation of the Rat Aorta (고칼륨과 저온이 흰쥐 대동맥의 내피세포의존성이 완능에 미치는 영향)

  • 이응배;전상훈
    • Journal of Chest Surgery
    • /
    • v.29 no.12
    • /
    • pp.1299-1305
    • /
    • 1996
  • The rat thoracic aorta was harvested to determine whether either hyperkalemla or hypothermia impairs the endothelium-dependent re axation of the vascular smooth muscle. Isolated thoracic aorta segments were studied in five groups(n=10 in each group). In group I(control), the isolated aortic seglnents were suspended in organ bath without any intervention. In group ll(endotheilum removAl). the endothelium of the aortic segment was removed by gentle rubbing of the intimal surface with a pair of forceps. In group III(457), IV(4mST), and V(3757), the aortic segments were exposed for 45minutes to 4$^{\circ}C$ St. Thomas hospital cardioplegic solution(57 : NaCl, 144.3; KCI, 19.6, MgCl:, 15.7 : CaCl, 2.2 mmol/L).4$^{\circ}C$ modified St. Thomas hospital cardioplegic solution(NaCl, 144.3 : KCI. 140.0 : MgCl:, 15.7; CaCl:. 2.2 mmol/L). and 37$^{\circ}C$ 57, before suspending in the organ bath, respectively. Then, aorta segments were suspended in organ baths(physiologic salt solution, 37$^{\circ}C$, 95% oxygen and 5% carbon dioxide) for Isometric tension recording. The vasodilatation to acetylcholine (10-2 to 10-2mol/L) was not impaired in control, 457, 4mST, nd 3757 groups. The vasodilatation to acetylcholine was impaired in endothelium removal group. The vasodilatation to sodium nitroprusslde (10-2 to 10-2 mol/L) was not impaired in all groups. In conclusion, both hyperkalemia and hypothermia do not alter irreversibly the function of the rondothelium of the thoracic aorta of the rat.

  • PDF

Synthesis and Characteristics of Partially Fluorinated Poly(vinylidene fluroide)(PVDF) Cation Exchange Membrane via Direct Sulfonation (직접술폰화반응에 의한 부분불소화 Poly(vinylidene fluroide)(PVDF) 양이온교환막의 합성 및 특성)

  • Kang, Ki Won;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.406-414
    • /
    • 2015
  • In this study, partially fluorinated cation exchange membranes were prepared by direct sulfonation of Poly(VDF-co-hexafluoropropylene) copolymers (PVDF-co-HFP) followed by a casting method for application in the Membrane capacitive deionization (MCDI). The structure of sulfonated PVDF-co-HFP (SPVDF) was confirmed by Fourier-transform infrared (FT-IR) and $^1H$ Nuclear magnetic resonance ($^1H$ NMR) analysis. For quantitative analysis of the chemical composition, the X-ray Photoelectron Spectroscopy (XPS) was used. The membrane properties such as water uptake, ion exchange capacity and electrical resistance were measured. It was suggested that the optimum direct sulfonation condition of PVDF-co-HFP ion exchange membranes was $60^{\circ}C$ and 7 hours for temperature and duration of sulfonation, respectively. The water uptake of the SPVDF ion exchange membrane was 21.5%. The ion exchange capacity and electrical resistance were 0.89 meq/g and $3.70{\Omega}{\cdot}cm^2$, respectively. It was investigated that if it is feasible to apply these membranes in MCDI at various cell potentials (0.9~1.5 V) and initial flow rates (10~40 mL/min). In the MCDI process, the maximum salt removal rate was 62.5% in repeated absorption-desorption cycles.

Case study of good soil management in plastic film-house cultivation (시설하우스 재배농가의 우수토양관리 사례연구)

  • Hyun, Byung-Keun;Kim, Lee-Yul;Kim, Moo-Sung;Cho, Hyun-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.98-104
    • /
    • 2001
  • Cultivation area of the plastic film-house has been continuously increased with the increase of consumers' income. Intensive land use without fallowing or crop rotation caused severe problem such as salt accumulation in soils and in turn retarded growth and low productivity. This study was carried out to solve them derived from longterm intensive farming practices. Seven farmers who are practicing plastic film-house cultivation were recommended for case study by municipal government and selected for their excellency of cultivation and soil management. The cultivation periods of these systems were in the range of 5 to 40 years in the regions mainly located in alluvial soil cultivated with cucumber, tomato and red pepper. The soils texture of the excellent farmers' fields were silt loam or sandy loam, ranged from 7 to 15 percents of clay contents. Soil bulk density, depth of plowing layer and soil aggregates contents of the farmers' soils were 0.89, 23.1 cm, 61.6% whereas those in neighboring soils were 1.10, 17.8 cm, 54.2 %, respectively. And pH, OM and $NO_3-N$ of the farmers' soils also were better than those of neighboring soils. There was no difference in population densities of nematode between the good farmers' and neighboring soils, but actinomyces and Fusarium densities of recommended farmers' soils were better than neighboring soils. The major farming practices by the good farmers were characterized by deep plowing with flooding, amendment of crude organic matter, and reduction of chemical fertilizer application before transplanting, and also drip irrigation and liquid manure application after planting. They also conducted solar sterilization with or without flooding, removal of plastic films during rainy days and culturing rice or corn as rotation crops to avoid the problems mentioned above.

  • PDF

Study on Characteristics of Biogas Production and Liquid Fertilizer with Anaerobic Co digestion of Livestock Manure and Food Waste (혐기성소화에서 가축분뇨와 음식물쓰레기의 혼용에 따른 바이오가스 생산 및 소화액의 액비 특성 연구)

  • Park, Woo-Kyun;Park, Noh-Back;Shin, Joung-Du;Hong, Seung-Gil;Kwon, Soon-Ik;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.895-902
    • /
    • 2011
  • Objective of this research was to investigate the characteristics of biogas production in anaerobic digestion reactor with different mixing ratio of food waste and swine manure. It was observed that the highest removal efficiency of organic material was 80% at 60 : 40 of mixing ratio (livestock manure : food waste). And also biogas yield was varied due to different mixing ratio of them. The cumulative biogas yield was highest at 60 : 40 of mixing rate (livestock manure : food waste). For use of the liquefied fertilizer as effluent from anaerobic digester, it was the limited ratio for 30% of co-digested food waste based on its salt content.

Progress in Nanofiltration-Based Capacitive Deionization (나노여과 기반 용량성 탈이온화의 진전)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.87-95
    • /
    • 2024
  • Recent studies explore a wide array of desalination and water treatment methods, encompassing membrane processes such as reverse osmosis (RO), nanofiltration (NF), and electrodialysis (ED) to advanced capacitive deionization (CDI) and its membrane variant (MCDI). Comparative analyses reveal ED's cost-effectiveness in low-salinity scenarios, while hybrid systems (NF-MCDI, RO-NF-MCDI) show improved salt removal and energy efficiency. Novel ion separation methods (NF-CDI, NF-FCDI) offer enhanced efficacy and energy savings. These studies also highlight the efficiency of these methods in treating complex wastewater specific to various industries. Environmental impact assessments emphasize the need for sustainability in system selection. Additionally, the integration of microfabricated sensors into membranes allows real-time monitoring, advancing technology development. These studies underscore the variety and promise of emerging desalination and water treatment technologies. They provide valuable insights for enhancing efficiency, minimizing energy usage, tackling industry-specific issues, and innovating to surpass conventional method limitations. The future of sustainable water treatment appears bright, with continual advancements focused on improving efficiency, minimizing environmental impact, and ensuring adaptability across diverse applications.

Processing of Ready-to-Cook Food Materials with Dark Fleshed Fish 1, Processing of Ready-to-Cook Sardine Meat "Surimi" (일시다획성 적색육어류를 이용한 중간식품소재 개발에 관한 연구 1. 정어리 연육의 가공)

  • LEE Byeong-Ho;LEE Kang-Ho;YOU Byeong-Jin;SUH Jae-Soo;JEONG In-Hak;JUNG Woo-Jin;KANG Jeong-Oak
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.5
    • /
    • pp.401-408
    • /
    • 1985
  • In order to develop new types of product which can offer a sanitary and preservative duality, and convenience to consumers in marketing and cooking particularly in urban area, two processing methods of ready-to-cook food materials with dark fleshed fishes like sardine and mackerel were investigated. A method applied, in this work, is processing of ready-to-cook sardine meat "surimi" in which sardine meat is treated with alkaline solution to stabilize myofibrillar proteins, washed thoroughly with water to remove soluble components, and added with a proper amount of polyphosphate and sorbitol to enforce the functional property of meat such as water holding capasity, elasticity, and gel strength. The textural properties of fish meat paste made from the "surimi" meat were greatly dependent upon the stability of myofibrillar proteins and the elimination of water soluble components. The salt soluble proteins of sardine meat were so unstable in post-mortem stage that the gel forming ability was lost within 3 days at $5^{\circ}C$ storage and 2 to 3 weeks even at $-20^{\circ}C$ although the freshness was well kept for a week at $5^{\circ}C$ and several months of storage at $-20^{\circ}C$. A proper way of treatment to keep the proteins stable was that fish meat must be washed with $0.4\%$ sodium bicarbonate solution followed by 3 to 4 times washing with water. This resulted in removal of $80\%$ water soluble proteins and 50 to $60\%$ lipids. The addition of polyphosphate and sorbitol affected the stability of proteins during the storage of "surimi" meat. When phosphate and sorbitol were added in the ratio of $0.3\%:\;0.3\%,\;0.6\%:\;3\%,\;0.6\%:\;6\%,\;0:\,0.3\%\;and\;0.3\%:\;0$, the gel forming ability terminated in 35 days, 21 days, 14 days, 14 days, and 14 days of storage at $-30^{\circ}C$, respectively, while that of the control was 7 days. And it was also noteworthy that at least 8.0 mg/g of salt soluble protein nitrogen content was required for gel formation.

  • PDF

Removal of Aqueous Arsenic Via Adsorption onto Si Slag (규소 슬래그를 이용한 수용상 비소 흡착 제거)

  • Kim, Seong Hee;Seol, Jeong Woo;Lee, Woo Chun;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.521-533
    • /
    • 2013
  • This study was initiated to evaluate the applicability of Si slag as an adsorbent via investigation of the main properties of Si slag as an adsorbent aw well as characterization of adsorption features between aqueous arsenic and Si slag. The specific surface area of Si slag was measured to be 6.71 $m^2/g$ which seems to be slightly higher than those of other slags, but relatively lower than those of iron (oxyhydr)oxides extensively used for arsenic controlling processes. The point of zero salt effect (PZSE) of Si slag determined by potentiometric titration appeared to be comparatively high (7.3), indicating the Si slag may be favorably used for adsorption of arsenic which predominantly exists as an oxy-anions. The results of adsorption isotherm indicate that regardless of arsenic species, Langmuir-type isotherm is the most suitable to simulate the adsorption of arsenic onto Si slag. With regard to pH-dependence of arsenic adsorption, the adsorption maxima of arsenite was centered at pH 7, and the adsorption was remarkably decreased in the other pH conditions. In the case of arsenate, on the other hand, the adsorption was highest at the lowest pH (4.0) and then gradually decreased with the increase of pH. Based on the results of kinetic experiments, it is likely that the adsorption of arsenite approached equilibrium within 2 hr, but it took about 8 hr for arsenate adsorption to be equilibrated. In addition, the Pseudo second order was evaluated to be most consistent with the empirical data of arsenic adsorption onto Si slag in this study. Under identical conditions, the affinity of arsenate onto Si slag was estimated to be nearly 6 times higher than that of arsenite.

Manufacturing Method and Characteristics of the Dongrok(copper chloride) pigments (동록(염화동) 안료의 제조방법 및 특성에 관한 연구)

  • KANG Yeongseok;PARK Juhyun;MUN Seongwoo;HWANG Gahyun;KIM Myoungnam;LEE Sunmyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.148-169
    • /
    • 2023
  • Hayeob pigment is known as one of the traditional dark green pigments, but the color, raw material, and manufacturing method have not been clearly identified. However, comparing the analysis results of the particle shape and constituent minerals of Hayeob pigments revealed through pigment analysis studies of colored cultural properties such as Dancheong, Gwaebul, and paintings, Hayeob pigments appear to be the same as Dongrok pigments produced by salt corrosion. Therefore, in order to restore Hayeob pigment, the manufacturing method of Dongrok pigment was studied based on the records of old literature. The Dongrok pigment manufacturing method confirmed in the old literature records is a natural corrosion method in which copper powder and a caustic are mixed and then left in a humid condition to corrode. Based on this, artificial corrosion using a corrosion tester was adopted to corrode the copper powder more efficiently, and an appropriate mixing ratio was selected by analyzing the state of corrosion products according to the mixing ratio of the caustic agent. In addition, the manufacturing method of Dongrok pigment was established by adding a salt removal process to remove residual caustic agents and a purification process to increase chroma during pigment coloring. The prepared Dongrok pigments have a bluish green or green color, show an elliptical particle shape and a form in which small particles are aggregated, and a porous surface is observed. The main constituent elements are copper(Cu) and chlorine(Cl), and the main constituent mineral is identified as atacamite [Cu2Cl(OH)3]. As a result of an accelerated weathering test to evaluate the stability of the prepared Dongrok pigments, it was found that the greenness partially decreased and the yellowness significantly increased as deterioration progressed. Before deterioration, the Dongrok pigments had lower yellowness compared to the Hayeob pigments of the old Dancheong, but after deterioration, yellowness increased significantly, and it was found to have a similar chromaticity range as Dancheong's Hayeob pigments. As a result, the prepared Dongrok pigments were confirmed to be similar to Dancheong's Hayeob pigments in terms of color as well as particle shape and constituent minerals.

Eco-friendly remediation and reuse for coastal dredged materials using a bioaugmentation technology (생물증강법을 이용한 오염해양준설토의 환경친화적 정화 및 재활용)

  • Kim, In-Soo;Ha, Shin-Young;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.374-381
    • /
    • 2015
  • Occurrences of coastal dredged materials are ever increasing due to port construction, navigational course maintenance and dredging of polluted coastal sediments. Ocean dumping of the coastal dredged materials has become virtually prohibited as London Treaty will be enacted as of the year 2012. It will be necessary to treat and recycle the dredged materials that may carry organic pollutants and heavy metals in a reasonable and effective process: collection of the dredged materials, liquid and solid separation, and treatment of organic compounds and heavy metals. In this study we have developed a continuous bioreactor system that can treat a mixture of silt and particulate organic matter using a microbial consortium (BM-S-1). The steady-state operation conditions were: pH (7.4-7.5), temperature ($16^{\circ}C$), DO (7.5-7.9), and salt concentration (3.4-3.7%). The treatment efficiencies of SCOD, T-N and T-P of the mixture were 95-96%, 92-99%, and 79-97%. The system was also effective in removal of heavy metals such as Zn, Ni, and Cr. Levels of MLSS during three months operation period were 11,000-19,000 mg/L. Interestingly, there was little sludge generated during this period of operation. The augmented microbial consortium seemed to be quite active in the removal of the organic component (30%) present in the dredged material in association with indigenous bacteria. The dominant phyla in the treatment processes were Proteobacteria and Bacteroidetes while dominant genii were Marinobacterium, Flaviramulus, Formosa, Alteromonadaceae_uc, Flavobacteriaceae_uc. These results will contribute to a development of a successful bioremediation technology for various coastal and river sediments with a high content of organic matter, inorganic nutrients and heavy metals, leading to a successful reuse of the polluted dredged sediments.

Removal of Pesticide Residues in Field-sprayed Leafy Vegetables by Different Washing Method (엽채류에 엽면 살포된 농약의 세척 방법에 따른 제거)

  • Kwon, Hyeyoung;Kim, Taek-Kyum;Hong, Su-Myeong;Kim, Chan-Sub;Baeck, Minkyeong;Kim, Doo-Ho;Son, Kyung-Ae
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.237-243
    • /
    • 2013
  • Pesticides were sprayed on perilla leaf and leafy lettuce in a greenhouse and the reduction rate of pesticide residues on each vegetable by washing were tested. The reduction rate of pesticide residues by washing for 30 sec~3 min on perilla leaf were 3~63% in tap water, 2~58% in salt water, 6~74% in green tea water, and 8~86% in detergent solution. The detergent solution only showed significant difference in reduction rates compared to the tab water washing. Considering reduction effects of the washing duration, it was showed that the reduction rates were a pattern of inclining as the duration of washing process increased, but there was no significant difference in the reduction rates except the reduction rates between washing in the detergent solution for 1 min and 3 min. Comparing washing in flowing tab water and in stagnant tab water with leafy lettuce, the reduction rate by one time washing were 8~68% in flowing tab water and 7~64% in stagnant tab water. The water and the time used in this experiment were 17.5 L, 2.9 min with flowing tab water and 4 L, 1 min with stagnant tab water. The reduction rate by 3 times washing in stagnant tab water were 16.5~76.6%, and the water and the time used were 12 L, 3 min. Therefore, when the water and the time used to wash vegetables were considered, washing two or three times in stagnant tab water could be more effective than washing one time in flowing tab water.