Browse > Article
http://dx.doi.org/10.9719/EEG.2013.46.6.521

Removal of Aqueous Arsenic Via Adsorption onto Si Slag  

Kim, Seong Hee (Department of Earth and Environmental Sciences and Research Institute of Natural Science(RINS), Gyeongsang National University)
Seol, Jeong Woo (Department of Earth and Environmental Sciences and Research Institute of Natural Science(RINS), Gyeongsang National University)
Lee, Woo Chun (Department of Earth and Environmental Sciences and Research Institute of Natural Science(RINS), Gyeongsang National University)
Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science(RINS), Gyeongsang National University)
Publication Information
Economic and Environmental Geology / v.46, no.6, 2013 , pp. 521-533 More about this Journal
Abstract
This study was initiated to evaluate the applicability of Si slag as an adsorbent via investigation of the main properties of Si slag as an adsorbent aw well as characterization of adsorption features between aqueous arsenic and Si slag. The specific surface area of Si slag was measured to be 6.71 $m^2/g$ which seems to be slightly higher than those of other slags, but relatively lower than those of iron (oxyhydr)oxides extensively used for arsenic controlling processes. The point of zero salt effect (PZSE) of Si slag determined by potentiometric titration appeared to be comparatively high (7.3), indicating the Si slag may be favorably used for adsorption of arsenic which predominantly exists as an oxy-anions. The results of adsorption isotherm indicate that regardless of arsenic species, Langmuir-type isotherm is the most suitable to simulate the adsorption of arsenic onto Si slag. With regard to pH-dependence of arsenic adsorption, the adsorption maxima of arsenite was centered at pH 7, and the adsorption was remarkably decreased in the other pH conditions. In the case of arsenate, on the other hand, the adsorption was highest at the lowest pH (4.0) and then gradually decreased with the increase of pH. Based on the results of kinetic experiments, it is likely that the adsorption of arsenite approached equilibrium within 2 hr, but it took about 8 hr for arsenate adsorption to be equilibrated. In addition, the Pseudo second order was evaluated to be most consistent with the empirical data of arsenic adsorption onto Si slag in this study. Under identical conditions, the affinity of arsenate onto Si slag was estimated to be nearly 6 times higher than that of arsenite.
Keywords
steel making slag; Si slag; arsenite; arsenate; adsorption;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Singh, U. and Uehara, G. (1998) Electrochemistry of the double layer: Principles and applications to soils. In Sparks, D.L. (ed.), Soil physical chemistry, CRC Press, Boca Raton, Florida, U.S.A, 1-56p.
2 Son, J.H., Roh, H., Lee, S.Y., Kim, G.H., Park, J.K., Yang, J.K. and Chang, Y.Y. (2009) Stabilization of heavy metal contaminated paddy soils near abandoned mine with steel slag and CaO. J. Korean Soil Groundwater Environ., v.14, p.78-86.   과학기술학회마을
3 Sparks, D.L. (1999) Kinetics and mechanisms of chemical reactions at the soil/mineral water interface. In Sparks, D.L.(ed.) Soil physical chemistry. 2nd(ed.), CRC press, Boca Raton, Fl, p.135-191.
4 Sparks, D.L. (2003) Environmental Soil Chemistry, p.207-244, Academic Press, San Diega, C.A.
5 Stumm, W. (1992) Chemistry of the Solid-water interface. John Wiley & Sons, New York, U.S.A.
6 Waybrant, K.R., Ptacek, C.J. and Blowes, D.W. (2002) Treatment of mine drainage using permeable reactive barriers: Column experiments. Environ. Sci. Technol., v.36, p.1349-1356.   DOI   ScienceOn
7 Williams, J.W. and Silver, S. (1984) Bacterial resistance and detoxification of heavy metals. Enzyme Micro. Tech., v.6, p.530-537.   DOI   ScienceOn
8 Yang, J.E., Park, D.S. and Han, D.S. (1995) Comparative assessment of the half-lives of benfuresate and oxolinic acid estimated from kinetic models under field soil condition. J. Korean Environ. Agri., v.14, p.302-311.
9 Carrasco, N., Kretzchmar, R., Pesch, M.-L. and Kraemer, S.M. (2007) Low concentration of surfactants enhance siderophore-promoted dissolution of goethite. Environ. Sci. Technol., v.37, p.3633-3638.
10 Inskeep, W.P., McDermott, T.R. and Fendorf, S. (2002) Arsenic (V)/(III) cycling in soils and natural water: chemical and microbiological processes. In Frankenberger, W.T., Jr.(ed), Environmental chemistry of arsenic, Marcel Dekker, New York, p.183-215.
11 Jain, A., Raven, K.P. and Loeppert, R.H. (1999) Arsenite and arsenate adsorption on ferrihydrite : Surface charge reduction and net OH- release stoichiometry. Environ. Sci. Technol., v.33, p.1179-1184.   DOI   ScienceOn
12 Jeong, H.S., Lee, W.C., Cho, H.G. and Kim S.-O. (2008) Study on adsorption characteristics of arsenic on magnetite. J. Korean Miner. Soc., v.21, p.227-237.
13 Jonsson, C.M., Persson, P., Sjoberg, S. and loring, J.S. (2008) Adsorption of glyphosate on goethite($\alpha$-FeOOH): Surface complexation modeling combining spectroscopic and adsorption data. Environ. Sci. Technol., v.42, p.2464-2469.   DOI   ScienceOn
14 Jung, M.C. (2005) Remediation of acid mine drainage from an abandoned coal mine using steel mill slag, cow manure and limestone. J. Korean Soc. Soil Groundwater Environ., v.10, p.16-23.   과학기술학회마을
15 Jung, Y.I., Lee, W.C., Cho, H.G., Yun, S.T. and Kim, S.-O. (2008) Adsorption of arsenic onto two-line ferrihydrite. J. Korean Miner. Soc., v.21, p.227-237.   과학기술학회마을
16 Keiko, S., Shunsuke, N., Wahyu, W. and Tsuyoshi, H. (2008) Removal of arsenate in acid mine drainage by a permeable reactive barrier bearing Granulated Blast Furnace Slag: Column study. Materials Trans., v.49, p.835-844.   DOI   ScienceOn
17 Palfy, P., Vircikova, E. and Molnar, L. (1999) Processing of arsenic waste by precipitation and solidification. Waste Management, v.19, p.55-59.   DOI   ScienceOn
18 Nielsen, U.G., Paik, Y., Julmis, K., Schoonen, M.A.A., Reeder, R.J. and Grey, C.P. (2005) Investigating sorpton on iron-oxyhydroxide soil minerals by solid-statd NMR spectroscopy: A 6Li MAS NMR study of adsorption and adsorption on goethite. J. Phy. Chem. B., v.109, p.18310-18315.   DOI   ScienceOn
19 Nowack, B., Lutzenkirchen, J., Behra, P. and Sigg, L. (1996) Modeling the adsorption of metal-EDTA complexes onto oxides. Environ. Sci. Technol., v.30, p.2397-2405.   DOI   ScienceOn
20 Oh, C.-T., Rhee, S.-S., Toshifumi, I., Kon, H.-J., Lee, W.-T. and Park, J.-B. (2010) Sorption characteristics of arsenic on furnace slag by adsorption isotherm and kinetic sorption experiments. J. Korean Geotec. Soc., v.26, p.37-45.   과학기술학회마을
21 Park, K.-S., Kim. H.-S. and Chun, H.D. (2006) Application of steel-making(BOF) slag for in-situ remediation of subaqueous contaminated sediments. Korean National Com. Irrig. Drai., v.13, p.310-322.   과학기술학회마을
22 Phillip, E., Santo, R. and David, C. (1998) Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. J. Wat. Res., v.32, p.3724-3730.   DOI   ScienceOn
23 Ponder, S.M., Darab, J.G., and Mallouk, T.E. (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol., v.34, p.2564-2569.   DOI   ScienceOn
24 Raven, K.P., Jain, A. and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrigydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol., v.32, p.344-349.   DOI   ScienceOn
25 Shin, D.H., Lee, S.E., Cho, S.H., Kim, H.C. and Ha, D.Y. (2003) Treatment of acid mine drainage(AMD) by limestone marine shells, slag. J. Environ. Eng., v.5.1-3 p.423-430.
26 Rietra, R.P.J.J., Hiemstra, T. and van Riemsdijk, W.H. (2001) Interaction between calcium and phosphate adsorption on goethite. Environ. Sci. Technol., v.35, p.3369-3374.   DOI   ScienceOn
27 Roman-Ross, G., Cuello, G.J., Turrilas, X., Fernandez-Martinez, A. and Charlet, L. (2006) Arsenite sorption and co-precipitation with calcite. Chemical Geology, v.233, p.328-336.   DOI   ScienceOn
28 Schwertmann U. and Cornell R.M. (2000) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH Publishers, New York, U.S.A. 188p.
29 Singh, T.S. and Pant, K.K. (2006) Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J. Hazard. Mater., v.131, p.29-36.   DOI   ScienceOn
30 Bai, B., Hankins, N.P., Hey, M.J. and Kingman, S.W. (2004) In situ mechanistic study of SDS adsorption on hematite for optimized froth flotation. Ind. Eng. Chem. Res., v.43, p.5326-5338.   DOI   ScienceOn
31 Bothe, J.V. and Brown, P.W. (1999) Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol., v.33, p.3806-3811.   DOI   ScienceOn
32 Choi, S.-W., Kim V., Chang W.-S. and Kim, E.-Y. (2007) The present situation of production and utilization of steel slag in korea and other countries. J. Korean Con. Ins., v.19, p.28-33.   과학기술학회마을
33 Davis, J.A. and Kent, D.B. (1990) Surface complexation modeling in aqueous geochemistry. In Schindler, P. W.(ed.) Reviews in mineralogy and geochemistry, v.23, p.170-260.
34 David, S., David, B. Carol, P. and Jeff, B. (2004) Application of permeable reactive barriers for treating mine drainage and dissolved metals in groundwater. Waste Geotechnical News, p.39-44.
35 Du, Q., Sun, Z., Forsling, W. and Tang, H. (1997) Acidbase properties of aqueous illite surfaces. J. Colloid Interf. Sci., v.187, p.221-231.   DOI   ScienceOn
36 Harris, M.A. and Ragusa, S. (2001) Bioremediation of acid mine drainage using decomposable plant material in a constant flow bioreactor. J. Environ. Geol., v.40, p.1192-1204.   DOI
37 He, Y.T. and Traina, S.J. (2005) Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation. Environ. Sci. Technol., v.39, p.4499-4504.   DOI   ScienceOn
38 Hwang, E.-H. and Kim, J.-M. (2008) Characteristics of EVA-polymer modified mortars recycling rapidchilled steel slag fine aggregate. J. Korean Ind. Eng. Chem., v.19, p.652-660.
39 Kim, S.H., Lee, W.C., Cho, H.G. and Kim, S.-O. (2012) Characterization of arsenic adsorption onto hematite. J. Korean Miner. Soc., v.25, p.197-210.   과학기술학회마을   DOI   ScienceOn
40 Kim, E.-H., Rhee, S.-S., Lee, G.-H., Kim, Y.-W., Park, H.-B. and Oh, M.-H. (2011) Assessment of the sorption characteristics of cadmium onto steel-making slag in simulated sea water using batch experiment. Jour. Korean Geotec. Soc., v.27, p.43-50.   과학기술학회마을   DOI   ScienceOn
41 Kim, S.-O., Lee, W.C., Jeong, H.S. and Cho, H.G. (2009) Adsorption of arsenic on goethite. J. Korean Miner. Soc., v.22, p.177-189.   과학기술학회마을
42 Kraepiel, A.M.L., Keller, K. and Morel, F.M.M. (1998) on the acid-base chemistry of permanently charged minerals. Environ. Sci. Technol., v.32, p.2829-2838.   DOI   ScienceOn
43 Kwon, S.-D. and Kim, S.-J. (1999) A study on the treatment of the acid mine drainage using the steel mill slag. J. Korean Soc. Groundwater Environ., v.6, p.206-212.   과학기술학회마을
44 La force, M.J., Hansel, C.M. and Fendorf, S. (2000) Arsenic speciation, seansonal transformations, and co-distribution with iron in a mine waste-influenced Palustrine Emegent Wetland. Environ. Sci. Technol., v.34, p.3937-3943.   DOI   ScienceOn
45 Lee, G.-H., Kim, E.-H., Park, J.-B. and Oh, M.-H. (2008) Estimation of the removal capacity for cadmium and calculation of minimum reaction time of BOF slag. J. Korean Geotec. Soc., v.27, p.5-12.   과학기술학회마을   DOI   ScienceOn
46 Lee, M.H. and Jeon, J.H. (2010) Study for the stabilization of arsenic in the farmland soil by using steel making slag and limestone. J. Korean Econ. Environ. Geol., v.43, p305-314.   과학기술학회마을
47 Lowry, G.V. and Johnson, K.M. (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution, Environ. Sci. Technol., v.38, p.5208-5216.   DOI   ScienceOn
48 Lee, S.E., Neue, H.U., Park, J.K. and Lim, S.H. (1993) Comparison of the ion adsorption method, potentiometric titration, and backtitration technique for surface charge measurement in Ultisol, Alfiso, and Inceptisol. J. Korean Soil Sci. Fert., v.26, p.160-171.
49 Lee, W.C., Choi, S.H., Cho H.G. and Kim, S.-O. (2011) Xray absorption spectroscopy study on surface interaction of arsenite onto two-line ferrihydrite at pHs 4 and 10. J. Korean Miner. Soc., v.24, p.73-82.   DOI   ScienceOn
50 Lee, W.C., Jeong H.S., Kim, J.Y. and Kim, S.-O. (2009) Study on adsorption features of arsenic onto lepidocrocite. J. Korean Econ. Environ. Geol., v.42, p.95-105.   과학기술학회마을
51 Mamindy-Pajany, Y., Hurel, C., Marmier, N. and Romeo, M. (2009) Arsenic adsorption onto hematite and goethite. Chimie, v.12, p.876-881.   DOI   ScienceOn
52 Marek, K. (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. Colloid Interf. Sci., v.337, p.439-448.   DOI   ScienceOn
53 Marshall, L. (1999) Management of Sulfidic Mine Wastes and Acid Drainage. Australian Centre for Mining Environmental Research, 18p.
54 Michelle, L.C. and Robert, S. (2004) Association of cadmium with MnO2 particles generated during permanganate oxidation. Water Res. v.38, p.887-894.   DOI   ScienceOn