• Title/Summary/Keyword: salt rejection

Search Result 94, Processing Time 0.03 seconds

Recent Progress in Qantum Dots Containing Thin Film Composite Membrane for Water Purification (양자점이 합체된 복합 박막을 이용한 정수의 최근 발전)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.293-306
    • /
    • 2020
  • Increasing harmful effects of climate change, such as its effect on water scarcity, has led to a focus on developing effective water purification methods to obtain pure water. Additionally, rising levels of water pollution is increasing levels of environmental degradation, calling for sources of water treatment to remove contaminants. To purify water, osmotic processes across a semipermeable membrane can take place, and recent studies are showing that incorporating nanoparticles, including carbon quantum dots (CQDs), graphene carbon dots (GQDs), and graphene oxide quantum dots (GOQDs) are making thin film composite (TFC) membranes more effective by increasing water flux while maintaining similar levels of salt rejection, increasing the hydrophilicity of the membrane surface, showing bactericidal properties, exhibiting antifouling properties to prevent accumulation of bacteria or other microorganisms from reducing the effectiveness of the membrane, and more. In the review, the synthesis process, applications, functionality, properties, and the role of several types of quantum dots are discussed in the composite membrane for water purification.

Preparation and Characterization of Polyamide Thin Film Composite Reverse Osmosis Membranes Using Hydrophilic Treated Microporous Supports (친수성 처리된 다공성 지지체를 이용한 폴리아마이드 박막 역삼투 복합막 제조 및 특성 분석)

  • Son, Seung Hee;Jegal, Jonggeon
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 2014
  • It is very well known that the conventional polyamide (PA) thin film composite (TFC) reverse osmosis (RO) membranes have excellent permselective properties, but their chlorine tolerance is not good enough. In this study, to improve such chlorine tolerance, microporous membranes containing hydrophilic functional groups such as -COOH were used as a support to prepare PA TFC RO membranes, employing the conventional interfacial polymerization method. Meta-phenylene diamine (MPD) and 2,6-diamine toluene (2,6-DAT) were used as diamine monomers and tri-mesoyl chloride (TMC) as an acid monomer. The membranes prepared were characterized using various instrumental analytical methods and permeation test set-up. The flux obtained from the membranes prepared so was more than $1.0m^3/m^2day$ at 800 psi of operating pressure, while the salt rejection was over 99.0%. The chlorine tolerance of them was also found to be better than that of the membrane prepared by using conventional polysulfone support without hydrophilic functional groups.

Characterization of Reverse Osmosis Membrane Surface Modified by Silane-epoxy Using UV (UV를 적용한 역삼투막의 실란-에폭시 표면 개질 및 특성 평가)

  • Park, Hee Min;Yang, Won Yong;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.169-179
    • /
    • 2018
  • The purposes of this paper were to improve both fouling and chlorine resistance by increasing the hydrophilicity of the reverse osmosis membrane. In order to improve chlorine resistance, the surface of RO membrane was activated by ultraviolet irradiation, and then it was modified by the sol-gel method using Octyltriethoxysilane (OcTES) such as the silane coupling agent to low sensitivity to chlorine, thereby the polyamide active layer was protected and chlorine resistance was improved. In addition, polyglycerol polyglycidyl ether (PGPE) and sorbitol polyglycidyl ether (SPE) coating with different number of epoxides, ring opening reaction of epoxide improved the anti-fouling resistance. The surface modification condition was optimized by FT-IR, XPS, and contact angle analysis. As a result, the permeability reduction rate of the silane-epoxy modified membrane after the fouling test was decreased about 1.5 times as compared with that of the commercial membrane. And the salt rejection was maintained over 90% at $20,000ppm{\times}hr$ even after chlorine resistance test.

Preparation and Properties of Cellulose Triacetate Membranes for Reverse Osmosis (역삼투용 Cellulose Triacetate 막의 제조와 특성)

  • Nam, Sang-Yong;Hwang, Hae-Young;Koh, Hyung-Chul
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.277-286
    • /
    • 2007
  • The technology of seawater desalination has been received much attentions to solve the problem of water shortage through all over the world. In this study, it attempts to confirm the use-possibility of cellulose triacetate (CTA) for preparation of reverse osmosis membranes which have been highlighted as high efficiency and low energy consumption process for seawater desalination. The effects of casting dope parameters like an acetyl content, solvent, additives on the membrane performance were investigated. It was possible to produce the membranes which have high water flow rate and salt rejection with the increase of acetyl content and dioxane content among various dioxane/acetone ratios. Acetic acid and maleic acid were preferred for additives to produce high performance membranes. It was verified that $HOLLOSEP^{(R)}$ module which is commercialized CTA membrane by TOYOBO Co. can produce stable water production and high-quality water for long-term operation in the practice plants without any chemical treatments.

A Study on Chlorine Resistance Improvement of Reverse Osmosis Membrane by Surface Modification (역삼투 분리막의 표면개질을 이용한 내염소성 향상에 관한 연구)

  • Kim, Younggil;Kim, Nowon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.320-329
    • /
    • 2005
  • Polyamide membrane degradation by chlorine has been studied to improve membrane durability. In this study, it was found that the salt rejection was reduced rapidly and flux of the membrane was increased slowly far membrane treated under chlorine condition. In order to improve resistance to chlorine of the polyamide reverse osmosis membrane, fluorine-containing silane coupling agent (FSCA) was introduced to surface modification. Surface properties and chlorine resistance of silane modified membrane were compared with virgin membrane. It was found that the surface of silane modified membrane has dense structure according to FSCA concentration increasing. The results of surface analysis suggest that FSCA retrieved a severe change in the hydrophobicity and surface roughness. In addition, it appears that FSCA can enhance chlorine resistance due to the interaction of such substance with free radical chlorine.

Reuse of Petroleum Refinery Wastewater Using Reverse Osmosis Membrane (역삼투막을 이용한 정유산업 폐수 재활용 연구)

  • Hwang, Jong-Sic;Sang, Byoung-In;Yoo, Je-Kang;Lee, Kyu-Hyun;Min, Byoung-Ryul;Kim, Byoung-Sik
    • Membrane Journal
    • /
    • v.4 no.4
    • /
    • pp.213-220
    • /
    • 1994
  • Reverse osmosis(R/O) pilot system, which consists of pretreatments and R/O membranes, was demonstrated to regenerate the petroleum refinery wastewater for the process feedwater supply. Despite of the unsteady quality of the wastewater effluent from the process facilities, relatively high salt rejection of 96~99% was obtained and the product water showed a feasible quality for the use of cooling tower feed water. The results of R/O membrane module cleaning with NaOH solution represented that there was some fouling effects on the membrane performance during the period of test due to the ineffective treatment processes proposed and used in this study.

  • PDF

Preparation of highly hydrophobic PVDF hollow fiber composite membrane with lotus leaf-like surface and its desalination properties

  • Li, Hongbin;Zi, Xingchen;Shi, Wenying;Qin, Longwei;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.287-298
    • /
    • 2019
  • Lotus leaf has a special dual micro and nano surface structure which gives its highly hydrophobic surface characteristics and so-called self cleaning effect. In order to endow PVDF hollow fiber membrane with this special structure and improve the hydrophobicity of membrane surface, PVDF hollow fiber composite membranes was obtained through the immersion coating of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) dilute solution on the outside surface of PVDF support membrane. The prepared PVDF composite membranes were used in the vacuum membrane distillation (VMD) for the desalination. The effects of PVDF-HFP dilute solution concentration in the dope solution and coating time on VMD separation performance was studied. Membranes were characterized by SEM, WCA measurement, porosity, and liquid entry pressure of water. VMD test was carried out using $35g{\cdot}L^{-1}$ NaCl aqueous solution as the feed solution at feed temperature of $30^{\circ}C$ and the permeate pressure of 31.3 kPa. The vapour flux reached a maximum when PVDF-HFP concentration in the dilute solution was 5 wt% and the coating time was kept in the range of 10-60 s. This was attributed to the well configuration of micro-nano rods which was similar with the dual micro-nano structure on the lotus leaf. Compared with the original PVDF membrane, the salt rejection can be well maintained which was greater than 99.99 % meanwhile permeation water conductivity was kept at a low value of $7-9{\mu}S{\cdot}cm^{-1}$ during the continuous testing for 360 h.

Architecture and Transport Properties of Membranes out of Graphene (그래핀에 기초한 막의 구조와 물질 전달 성질 개관)

  • Buchheim, Jakob;Wyss, Roman M.;Kim, Chang-Min;Deng, Mengmeng;Park, Hyung Gyu
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.239-252
    • /
    • 2016
  • Two-dimensional materials offer unique characteristics for membrane applications to water technology. With its atomic thickness, availability and stackability, graphene in particular is attracting attention in the research and industrial communities. Here, we present a brief overview of the recent research activities in this rising topic with bringing two membrane architecture into focus. Pristine graphene in single- and polycrystallinity poses a unique diffusion barrier property for most of chemical species at broad ambient conditions. If well designed and controlled, physical and chemical perforation can turn this barrier layer to a thinnest feasible membrane that permits ultimate permeation at given pore sizes. For subcontinuum pores, both molecular dynamics simulations and experiments predict potential salt rejection to envisage a seawater desalination application. Another novel membrane architecture is a stack of individual layers of 2D materials. When graphene-based platelets are chemically modified and stacked, the interplanar spacing forms a narrow transport pathway capable of separation of solvated ions from pure water. Bearing unbeknownst permeance and selectivity, both membrane architecture - ultrathin porous graphene and stacked platelets - offer a promising prospect for new extraordinary membranes for water technology applications.

Deoxynivalenol- and zearalenone-contaminated feeds alter gene expression profiles in the livers of piglets

  • Reddy, Kondreddy Eswar;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Wook;Jung, Hyun Jung;Choe, Changyong;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.595-606
    • /
    • 2018
  • Objective: The Fusarium mycotoxins of deoxynivalenol (DON) and zerolenone (ZEN) cause health hazards for both humans and farm animals. Therefore, the main intention of this study was to reveal DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the liver of piglets. Methods: In the present study, 15 six-week-old piglets were randomly assigned to the following three different dietary treatments for 4 weeks: control diet, diet containing 8 mg DON/kg feed, and diet containing 0.8 mg ZEN/kg feed. After 4 weeks, liver samples were collected and sequenced using RNA-Seq to investigate the effects of the mycotoxins on genes and gene networks associated with the immune systems of the piglets. Results: Our analysis identified a total of 249 differentially expressed genes (DEGs), which included 99 upregulated and 150 downregulated genes in both the DON and ZEN dietary treatment groups. After biological pathway analysis, the DEGs were determined to be significantly enriched in gene ontology terms associated with many biological pathways, including immune response and cellular and metabolic processes. Consistent with inflammatory stimulation due to the mycotoxin-contaminated diet, the following Kyoto encyclopedia of genes and genomes pathways, which were related to disease and immune responses, were found to be enriched in the DEGs: allograft rejection pathway, cell adhesion molecules, graft-versus-host disease, autoimmune thyroid disease (AITD), type I diabetes mellitus, human T-cell leukemia lymphoma virus infection, and viral carcinogenesis. Genome-wide expression analysis revealed that DON and ZEN treatments downregulated the expression of the majority of the DEGs that were associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9), proliferation (insulin-like growth factor 1, major facilitator superfamily domain containing 2A, insulin-like growth factor binding protein 2, lipase G, and salt inducible kinase 1), and other immune response networks (paired immunoglobulin-like type 2 receptor beta, Src-like-adaptor-1 [SLA1], SLA3, SLA5, SLA7, claudin 4, nicotinamide N-methyltransferase, thyrotropin-releasing hormone degrading enzyme, ubiquitin D, histone $H_2B$ type 1, and serum amyloid A). Conclusion: In summary, our results demonstrated that high concentrations DON and ZEN disrupt immune-related processes in the liver.

Preparation and Characterization of Cellulosic Forward Osmosis Membranes (셀룰로오스 계 고분자를 이용한 정삼투막의 제조 및 특성)

  • Jeong, Bo-Reum;Kim, Jong-Hak;Kim, Beom-Sik;Park, Yoo-In;Song, Du-Hyun;Kim, In-Chul
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.222-227
    • /
    • 2010
  • The purpose of this study is to prepare forward osmosis (FO) membranes using a variety of cellulose-based polymers and to evaluate the performance of difference depending on each of the polymers and additives. Forward osmosis membranes based on cellulose acetate (CA) and cellulose triacetate (CTA) were prepared through phase inversion. The performance of FO membranes developed, such as flux and salt rejection, was compared under the osmotically- and pressure-driven conditions. In CA FO membranes, the execution time of solvent evaporation and membrane annealing induced the change in membrane performance. But the performance of CTA FO membrane was improved by using additives rather than annealing. Moreover, the flux of CTA FO membrane was $4.46\;L/m^2hr$ but that of CA/CTA FO membrane was $8.89\;L/m^2hr$ in FO mode. The CTA FO membrane with blending CA was more efficient to increase FO permeate flow rather than using a single polymer membrane.