• Title/Summary/Keyword: salt rejection

Search Result 94, Processing Time 0.032 seconds

Complement-dependent Cytotoxic Crossmatch for Prevention of Hyperacute Rejection in Canine Renal Allografts (개의 신장 동종 이식에서 초급성 거부반응의 예방을 위한 보체의존성 세포독성 DLA 플래스 I 교차 반응)

  • Ghil Heh Myung;Woo Heung-Myung
    • Journal of Veterinary Clinics
    • /
    • v.22 no.4
    • /
    • pp.322-327
    • /
    • 2005
  • DLA class I complement-dependent cytotoxicity (CDC) cross-match method was established to control hyperacute rejections in organ transplantation. The aim of the present study is to investigate if DLA class 1 CDC corssmatch method is effective to prevent hyperacute rejections in canine renal allografts. Seven mongrel dogs of similar age and weight were used. Erythrocyte crossmatch was first performed and only the negatives were used. Among the same blood types, CDC cross-match was performed. Anti-dog serum, Hank's balanced salt solution(HBSS), and tile self-serum was used as a positive-, a negative-, and all auto-control respectively. After the reaction with class I complement, it was stained with eosin and scored by international cytotoxicity scoring system under inverted phase microscope. According to these results, kidneys oi CDC negatives among same blood types were cross-transplanted to observe the incidence of hyperacute rejections. One of four 1.2 B blood type dogs had autoantibodies. here were negative CDC results among each blood type, and also there were negative results between different blood types. Two pairs with the same blood types and negative CDC results underwent allo-transplantation each other. There were no hyperacute rejections. DLA cross-match method studied in this experiment for canine renal allograft can be effective to prevent hyperacute rejections. it may be applicable for the future studies of histocompatibility testing in canine renal allografts.

Evaluation of the Characteristics of High-Flux Reverse Osmosis Membranes with Various Additives (다양한 첨가제에 따른 고투과성 역삼투막의 특성평가)

  • Hyun Woong Kwon;Kwang Seop Im;Gede Herry Arum Wijaya;Seong Min Han;Seong Heon Kim;Jun Ho Park;Dong Jun Lee;Sang Min Eom;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.427-438
    • /
    • 2023
  • In this study, in order to improve the performance of the reverse osmosis membrane with high water flux and high salt rejection, a study was conducted on the evaluation of characteristics according to the curing temperature and time during various additives and interfacial polymerization. The morphology of the membrane with no additives and the membrane with additives both showed a "rigid-and-valley" structure, confirming that the polyamide layer was successfully polymerized on the surface of the porous support layer. In addition, the additive of 2-Ethyl-1,3-hexanediol (EHD) had improved hydrophilicity and water flux, which was confirmed by measuring the contact angle. Finally, a highly permeable TFC membrane with NaCl and MgSO4 salt rejection of 97.78% and 98.7% and a high water flux of 3.31 L/(m2⋅h⋅bar) was prepared.

Effect of Ionic Molar Conductivity on Separation Characteristics of Heavy Metals by Nanofiltration Membranes in Waste Water (이온 몰 전도도가 나노여과막에 의한 폐수 중의 중금속 분리특성에 미치는 영향)

  • Oh, Jeong-Ik
    • Land and Housing Review
    • /
    • v.4 no.1
    • /
    • pp.119-124
    • /
    • 2013
  • Generally, the characteristic of nanofiltration membranes were catagorized into charged membrane, sieve effect, interaction between membarnes and target solutes. This study aims to investigate the effect item of heavy metal separation with view of charge nanofiltration membranes. The experiments of nanofiltration were conducted by nanofiltration set-up with operational pressure of 0.24 MPa at $25^{\circ}C$ by using synthetic wastewater containing 0.1mg/L of Cr, Fe, Cu, Zn, As, Sn, Pb. Nanofiltration membranes rejected heavy metals much better than chloride, sulfate and TOC, of which concentration in synthetic wastewater was higher than that of heavy metals. To consider rejection characteristics of various metals by nanofiltration membranes, separation coefficient, which is the molar conductivity ratio of the metal permeation rate to the chloride ion or TOC permeation rate, was introduced. In spite of different materials and different nominal salt rejection of nanofiltration membrane used, the separation coefficients of metals were nearly the same. These phenomena were observed in the relationship between the molar conductivity and the separation coefficient for heavy metals.

Successful Treatment with Rituximab and Immunoadsorption for an Auto-Antibody Induced Bile Salt Export Pump Deficiency in a Liver Transplanted Patient

  • Quintero, Jesus;Juamperez, Javier;Gonzales, Emmanuel;Julio, Ecaterina;Mercadal-Hally, Maria;Collado-Hilly, Mauricette;Marin-Sanchez, Ana;Charco, Ramon
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.2
    • /
    • pp.174-179
    • /
    • 2020
  • We present an 8 years old girl who was diagnosed at 6 months of age of Progressive Familial Intrahepatic Cholestasis type 2. Although liver transplantation (LT) was classically considered curative for these patients, cholestasis recurrence with normal gamma-glutamyl transpeptidase (GGT), mediated by anti-bile salt export pump (BSEP) antibodies after LT (auto-antibody Induced BSEP Deficiency, AIBD) has been recently reported. Our patient underwent LT at 14 months. During her evolution, patient presented three episodes of acute rejection. Seven years after the LT, the patient presented pruritus with cholestasis and elevation of liver enzymes with persistent normal GGT. Liver biopsy showed intrahepatic cholestasis and giant-cell transformation with very low BSEP activity. Auto-antibodies against BSEP were detected therefore an AIBD was diagnosed. She was treated with Rituximab and immunoadsorption with resolution of the AIBD. As a complication of the treatment she developed a pneumocystis infection successfully treated with corticoids, cotrimoxazol and anidulafungin.

Exploration of shockwaves on polymeric membrane physical properties and performance

  • Lakshmi, D. Shanthana;Saxena, Mayank;Ekambaram, Shivakarthik;Sivaraman, Bhalamurugan
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2021
  • The Commercial polymeric membranes like Polysulfone (PSF), Polyvinylidene difluoride (PVDF) and Polyacrylonitrile (PAN) which are an integral part of water purification investigation were chosen for the shockwave (SW) exposure experiment. These membranes were prepared by blending polymer (wt. %) / DMF (solvent) followed by phase-inversion casting technique. Shockwaves are generated by using Reddy Tube lab module (Table-top Shocktube) with range of pressure (1.5, 2.5 and 5 bar). Understanding the changes in membrane before and after shock wave treatment by parameters, i.e., pure water flux (PWF), rejection (%), porosity, surface roughness (AFM), morphology (SEM) and contact angle which can significantly affect the membrane's performance. Flux values PSf membranes shows increase, 465 (pristine) to 524 (1.5wt%) LMH at 50 Psi pressure and similar enhancement was observed at 100Psi (625 to 696 LMH). Porosity also shows improvement from 73.6% to 76.84% for 15wt% PSf membranes. It was observed that membranes made of polymers such as PAN and PSF (of high w/w %) exhibits some resistance against shockwaves impact and are stable compared to other membranes. Shockwave pressure of up to 1.5 bar was sufficient enough to change properties which are crucial for performance. Membranes exposed to a maximum pressure of 5 bar completely scratched the surface and with minimum pressure of 1.5bar is optimum enough to improve the water flux and other parameters. Initial results proved that SW may be suitable alternative route to minimize/control membrane fouling and improve efficiency.

Effect of MWCNTs/PSf support layer on the performance of polyamide reverse osmosis membrane (탄소나노튜브가 첨가된 폴리술폰 지지체가 폴리아미드 역삼투막의 성능에 미치는 영향)

  • Min, Choong-Sik;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.127-137
    • /
    • 2020
  • In this study, a MWCNT(multi-wall carbon nanotube) was added to polysulfone(PSf) support layer to improve flux of TFC(thin film composite) RO(reverse osmosis) membrane. Two different kinds of MWCNT were used. Surfaces of some MWCNTs were modified hydrophilically through acid treatment, while those of other MWCNTs were modified through heat treatment to maintain their hydrophobicity. MWCNT/PSf support layer was prepared by adding PSf to the NMP mixed solvent containing 0.1 wt% MWCNTs using a phase inversion method. The surface porosity of the MWCNT/PSf support increased by 42~46% while its surface pore size being maintained. The TFC RO membrane made of MWCNT/PSf support layer showed a 20% flux increase while its salt rejection characteristics is sustained. In addition, the MWCNT/PSf support layer has better mechanical stability than the PSf support layer, there resulting in an increased resistance of flux reduction due to physical pressure.

Treatment of high-salinity wastewater after the resin regeneration using VMD

  • Gao, Junyu;Wang, Manxiang;Yun, Yanbin
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.53-62
    • /
    • 2018
  • In this study, vacuum membrane distillation (VMD) was used to treat high-salinity wastewater (concentration about 17%) discharged by chlor-alkali plant after resin regeneration. The feasibility of VMD for the treatment of real saline wastewater by using Polyvinylidene fluoride (PVDF) microporous plate membrane with a pore diameter of $0.2{\mu}m$ was investigated. The effects of critical operating parameters such as feed temperature, velocity, vacuum degree and concentration on the permeate water flux were analyzed. Numerical simulation was used to predict the flux and the obtained results were in good agreement with the experimental data. The results showed that an increase in the operating conditions could greatly promote the permeate water flux which in turn decreased with an increase in the concentration. When the concentration varied from 17 to 25%, the permeate water flux dropped marginally with time indicating that the concentration was not sensitive to the decrease in permeate water flux. The permeate water flux decreased sharply until zero due to the membrane fouling resistance as the concentration varied from 25 to 26%. However, the conductivity of the produced water was well maintained and the average value was measured to be $4.98{\mu}s/cm$. Furthermore, a salt rejection of more than 99.99% was achieved. Overall, the outcome of this investigation clearly indicates that VMD has the potential for treating high-salinity wastewater.

The Study of Wetting in Direct Contact Membrane Distillation (직접접촉식 막증발법에서의 막 젖음 현상에 관한 연구)

  • Shin, Yonghyun;Koo, Jaewuk;Han, Jihee;Lee, Sangho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.30-34
    • /
    • 2014
  • Membrane distillation (MD) is a thermal driven separation process in which separation a hydrophobic membrane is a barrier for the liquid phase, letting the vapor phase pass through the membrane pores. Therefore, a porous and hydrophobic membrane should be used in membrane distillation. MD cannot work if water penetrates into the pores of the membrane (membrane wetting). Accordingly, it is necessary to prevent wetting of MD membranes and to remove water inside the pores of the wetted membranes if possible. In this context, our study aimed to develop methods to recover wetted membranes in MD processes. Poly-vinylidene fluoride (PVDF) membranes were used in this study. A laboratory-scale direct contact MD (DCMD) system was used to examine the effect of operating parameters on wetting. For dewetting the wetted membranes, specific techniques including the use of high temperature air were applied. The performances of the membranes before and after dewetting were compared in terms of flux, salt rejection and liquid entry pressure(LEP). The surface morphology of dewetted membrane was confirmed by scanning electron microscope (SEM).

Preparation of Porous Glass Membranes by the Phase-Separation Technique (상분리법에 의한 다공질 유리막의 제조)

  • 현상훈;최봉호
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.1
    • /
    • pp.59-65
    • /
    • 1988
  • To develop porous glass membranes used for a effective membrane-separation process, porous glasses and glass membranes were prepared from the sodium borosilicate parent glass by the phaseseparation technique and effects of heat-treatment and leaching conditions on their characteristics were investigated. The crack-free glass membranes could be fabricated from the 9.4 Na2-O-30.7 B2O3-59.2 SiO2-0.7 Al2O3(wt%) parent glass by heat-treatment at the lower temperature(550-570$^{\circ}C$) and for longer than 45 hrs for the phase separation, followed by leaching with 3N-HCl+60% ethylene glycol solution at 90$^{\circ}C$ over 25 hrs. Porous glasses prepared in this work showed large specific surface areas(400㎡/g) and narrow pore size distribution with the mean pore radius of 14${\AA}$ enough for the application as reverse osmosis membranes. The salt-rejection efficiency and product-flux of the glass membranes heat-treated at 570$^{\circ}C$ for 80 hrs were found to be 51.8% and 270cc/㎡. hr, respectively. This result suggests that the porous glass membranes fabricated in this study could be applied for the reverse osmosis process.

  • PDF

An Experimental Study on the Characteristic of Thermal Performance according to Feed Water Conditions to of Vacuum Membrane Distillation Module using PVDF Hollow Fiber (PVDF 중공사막을 이용한 진공 막 증류 모듈의 공급수 조건에 따른 열성능 특성에 관한 실험적 연구)

  • Joo, Hongjin;Kwak, Heeyoul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • In this study, thermal performance test of VMD module was performed, prior to the construction of the demonstration plant using the vacuum membrane distillation (VMD) module of the capacity of $400m^3/day$ and to the commercialization of the VMD module. For the thermal performance test, the experimental equipment of capacity of $2m^3/day$ was constructed. The permeate flux test and thermal performance test according to feed water conditions such as temperature and flow rate were conducted. The VMD module used in the study was manufactured by ECONITY Co., LTD with PVDF hollow fiber membrane. As a result, the Performance Ratio (PR) of the VMD module showed the maximum value of 0.904 under the condition of feed water temperature of $75^{\circ}C$ and flow rate of $8m^3/h$. PR value of the VMD module using PVDF hollow fiber membrane showed linearly increasing relationship with feed water temperature and flow rate. Also, The permeate flux of the VMD module was analyzed to have maximum value of 18.25 LMH and the salt rejection was 99.99%.