• Title/Summary/Keyword: salt production

Search Result 752, Processing Time 0.034 seconds

Effect of Salt Concentration and Turbidity on the Inactivation of Artemia sp. in Electrolysis UV, Electrolysis+UV Processes (해수의 염 농도와 탁도가 전기, UV 및 전기+UV 공정의 Artemia sp. 불활성화에 미치는 영향)

  • Kim, Dong-Seng;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.28 no.3
    • /
    • pp.291-301
    • /
    • 2019
  • This study was conducted to investigate the effect of salt concentration and turbidity on the inactivation of Artemia sp. by electrolysis, UV photolysis, electrolysis+UV process to treat ballast water in the presence of brackish water or muddy water caused by rainfall. The inactivation at different salt concentrations (30 g/L and 3 g/L) and turbidity levels (0, 156, 779 NTU) was compared. A decrease in salt concentration reduced RNO (OH radical generation index) degradation and TRO (Total Residual Oxidant) production, indicating that a longer electrolysis time is required to achieve a 100% inactivation rate in electrolysis process. In the UV process, the higher turbidity results in lower UV transmittance and lower inactivation efficiency of Artemia sp. Higher the turbidity resulted in lower ultraviolet transmittance in the UV process and lower inactivation efficiency of Artemia sp. A UV exposure time of over 30 seconds was required for 100% inactivation. Factors affecting inactivation efficiency of Artemia sp. in low salt concentration are in the order: electrolysis+UV > electrolysis > UV process. In the case of electrolysis+UV process, TRO is lower than the electrolysis process, but RNO is more decomposed, indicating that the OH radical has a greater effect on the inactivation effect. In low salt concentrations and high turbidity conditions, factors affecting Artemia sp. inactivation were in the order electrolysis > electrolysis+UV > UV process. When the salt concentration is low and the turbidity is high, the electrolysis process is affected by the salt concentration and the UV process is affected by turbidity. Therefore, the synergy due to the combination of the electrolysis process and the UV process was small, and the inactivation was lower than that of the single electrolysis process only affected by the salt concentration.

Biochemical and Molecular Insights into Bile Salt Hydrolase in the Gastrointestinal Microflora - A Review -

  • Kim, Geun-Bae;Lee, Byong H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1505-1512
    • /
    • 2005
  • Bile salt deconjugation is the most biologically significant reaction among the bacterial alterations of bile acids in the gastrointestinal tract of human and animal. The responsible enzyme, bile salt hydrolase (BSH), catalyzes the hydrolysis of glycineand/or taurine-conjugated bile salts into amino acid residues and deconjugated bile acids. Herein we review current knowledge on the distribution of BSH activity among various microorganisms with respect to their biochemical and molecular characteristics. The proposed physiological impact of BSH activity on the host animal as well as on the BSH-producing bacterial cells is discussed. BSH activity of the probiotic strains is examined on the basis of BSH hypothesis, which was proposed to explain cholesterol-lowering effects of probiotics. Finally, the potential applications of BSH research are briefly discussed.

Spherical Granule Production from Micronized Saltwort (Salicornia herbacea) Powder as Salt Substitute

  • Shin, Myung-Gon;Lee, Gyu-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2013
  • The whole saltwort plant (Salicornia herbacea) was micronized to develop the table salt substitute. The micronized powder was mixed with distilled water and made into a spherical granule by using the fluid-bed coater (SGMPDW). The SGMPDW had superior flowability to powder; however, it had low dispersibility. To increase the dispersibility of SGMPDW, the micronized powder was mixed with the solution, which contained various soluble solid contents of saltwort aqueous extract (SAE), and made into a spherical granule (SGMPSAE). The SGMPSAE prepared with the higher percentages of solid content of SAE showed improved dispersibility in water and an increase in salty taste. The SGMPSAE prepared with 10% SAE was shown to possess the best physicochemical properties and its relative saltiness compared to NaCl (0.39). In conclusion, SGMPSAEs can be used as a table salt substitute and a functional food material with enhanced absorptivity and convenience.

A Novel Synthetic Method for Bepotastine, a Histamine H1 Receptor Antagonist

  • Ha, Tae Hee;Suh, Kwee-Hyun;Lee, Gwan Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.549-552
    • /
    • 2013
  • An efficient and alternative synthesis of enantiomerically pure (+)-(S)-4-(4-((4-chlorophenyl)(pyrid-2-yl)methoxy]piperidin-1-yl)butanoic acid, bepotastine (1) is described. The key resolution of (R/S)-bepotastine l-menthyl ester (3) is achived via diastereomeric salt crystallization using N-benzyloxycarbonyl-L-aspartic acid (NCbzLAA) as the resolving agent to provide (S)-bepotastine l-menthyl ester (S)-3. Hydrolysis of (S)-bepotastine l-menthyl ester (S)-3 afforded the desired bepotastine (1) with good yields and enantiopurity (> 99%). Finally, bepotastine besilate (4) and bepotastine calcium (5) are achived by salt formation of bepotastine (1) with benzene sulfonic acid and calcium salt respectively. The reaction conditions were optimized to make suitable for commercial scale production.

Amino Acid Properties and Sensory Characteristics of Chicken Stock by Different Salt Contents (소금 첨가량을 달리한 닭 육수의 아미노산 조성 및 관능적 특성)

  • Kim, Doog-Seok;Kim, Jog-Seck;Seoung, Tae-Jong
    • Culinary science and hospitality research
    • /
    • v.16 no.4
    • /
    • pp.274-285
    • /
    • 2010
  • This study attempts to develop a mass production product standardized by the application of high pressure extraction cooking(HPEC) in order to suggest a desirable direction for the development of salt contained standardized chicken stock. In our experiment on chicken stock with varying its salt content, the total free amino acid content was highest in S3, which contained 0.3% of salt In addition, when the total content of free amino acid was divided into the contents of essential amino acid, palatable amino acid, and other types of amino acid, they showed the same distribution as the total content of free amino acid. In addition, the total content of palatable amino acid was highest among the specimens. In the results of investigating the palatability of chicken stock according to salt content, saltiness increased with the increase of the salt content, but no significant difference was observed in preference for saltiness. It is believed to have come from the difference in the sensory evaluators' preference for saltiness, and it shows that the salt content has an effect on sweet taste, delicate taste, fishy smell, and color. In particular, specimen 83, which contained 0.3% of salt, showed the highest content of palatable amino acid, and the highest level of delicate taste in sensory tests, suggesting the correlation between palatable amino acid and delicate taste.

  • PDF

Effects of Bamboo Salt with Sodium Fluoride on the Prevention of Dental Caries

  • Lee, Hye-Jin;Park, A-Reum;Oh, Han-Na
    • Journal of dental hygiene science
    • /
    • v.19 no.4
    • /
    • pp.288-293
    • /
    • 2019
  • Background: Dental caries is one of several prevalent oral diseases caused by dental plaque biofilms. This study evaluated the anti-cariogenic effects of a bamboo salt (BS) and sodium fluoride (NaF) mixture on oral bacteria. Methods: The effects of several mixtures of NaF and BS on acid production, growth, and adhesion to glass beads of Streptococcus mutans, and their anti-cariogenic properties were investigated. The growth of S. mutans was measured according to optical density at 3, 6, 9, 12, 15, 18, and 24 hours after treatment using spectrophotometry at a wavelength of 600 nm, while pH was measured using a pH meter. Adhesion of S. mutans was measured according to the weight of glass beads from each group before and after incubation. Gene expression was measured using real-time polymerase chain reaction. Acid production and growth patterns of S. mutans were compared using repeated measures analysis of variance, followed by Scheffe's post-hoc test. The Kruskal-Wallis test was used to compare adhesion, followed by the Mann-Whitney test. Gene expression in the experimental and control samples was compared using the Student's t-test. Results: Growth, acid production, and adhesion of S. mutans were inhibited in all experimental groups. Expression of gft and fructosyltransferase in S. mutans was inhibited in all groups. A mixture of NaF and BS significantly reduced growth, acid production, adhesion, and gene expression of S. mutans compared with the other groups. Conclusion: Results of the present study demonstrated that a mixture of NaF and BS was useful as a mouth rinse in preventing dental caries.

Microbial Communities and Physicochemical Properties of Myeolchi Jeotgal (Anchovy Jeotgal) Prepared with Different Types of Salts

  • Shim, Jae Min;Lee, Kang Wook;Yao, Zhuang;Kim, Jeong A;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1744-1752
    • /
    • 2017
  • Myeolchi jeotgals (MJs) were prepared with purified salt (PS), solar salt aged for 1 year (SS), and bamboo salt (BS) melted 3 times at 10% and 20% (w/w) concentrations, and fermented for 28 weeks at $15^{\circ}C$. BS MJ showed higher pH and lower titratable acidities than the other samples because of the alkalinity of bamboo salt. Lactic acid bacteria counts increased until 4-6 weeks and then decreased gradually, and were not detected after 20 weeks from MJs with 10% salt. Yeast counts of PS MJs were higher than those of BS and SS MJs. Bacilli were detected in relatively higher numbers throughout the 28 weeks, like marine bacteria, but archae were detected in lower numbers during the first 10 weeks. When 16S rRNA genes were amplified from total DNA from PS MJ (10% salt) at 12 weeks, Tetragenococcus halophilus was the major species. However, Staphylococcus epidermidis was the dominant species for BS MJ at the same time point. In SS MJ, T. halophilus was the dominant species and S. epidermidis was the next dominant species. BS and SS MJs showed higher amino-type nitrogen, ammonia-type nitrogen, and volatile basic nitrogen contents than PS MJs. SS and BS were better than PS for the production of high-quality MJs.

Distribution and Cyclings of Nutrients in Phragmites communis Communities of a Coastal Salt Marsh (해안염습지 갈대 군락의 무기영양소 순환과 분배)

  • 민병미
    • Journal of Plant Biology
    • /
    • v.26 no.1
    • /
    • pp.17-32
    • /
    • 1983
  • The aboveground production, nutrient distribution and nutrient cyclings were compared between two Phragmites communis communities growing in the different salt contents of soil in a coastal salt marsh. Inorganic nutrient contents of soil for plant growth were greater at the low salt stand than at the high salt stand except for sodium(Na). Maximum aboveground biomass of the plant at the low and the high salt stands were 2,533 and 1,719 g dw/$m^2$, respectively, in August. Seasonal changes of nutrient content of biomass in dry weight decreased with growth except for Na. Nutrient contents in biomass per unit land area increased continuously as biomass increases, although the amount of potassium(K) reached the maximum content in July and thereafter decreased. Vertical distributions of total nitrogen(T-N) and phosphorus(P) increased with plant height, but Na showed the reverse trend. That of K was similar to the patterns for T-N and P in the leaves, and to the pattern of Na in the stems. The Na was greatly accumulated in underground biomass but transported scarcely to aboveground. At the low and the high salt stands, the ratios of the inorganic nutrients contained in the plant were 100 : 66 for T-N, 100 : 61 for P, 100 : 62 for K and 100 : 97 for Na. the ratios of the amounts of nutrients retrieved to soil were 100 : 242 for T-N, 100 : 408 for P, 100 : 127 for K and 100 : 269 for Na, respectively. Turnover times of the T-N, P, K and Na in the communities were 56, 1, 15 and 174 years at the low salt stand, and 75, 2, 24 and 323 years at the high salt stand, respectively. In nutrient cyclings, all of the nutrients retrieving to soil were less than uptake by plant. Among the nutrient, especially P is expected to be exhausted from soil, sooner or later, because of the harvest by men.

  • PDF

A Forecasting on the Market Size of Korean Solar Salt (한국 식용 천일염 시장규모 전망에 관한 연구)

  • Choi, Byung-Ok;Kim, Bae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4812-4818
    • /
    • 2013
  • This paper contains material of the supply-demand forecasting of solar salt for food in Korea. The solar salt was granted admission for food by the act of salt management in 2007. So, the yearly statistics of solar salt for food are not enough to forecast the supply-demand unsing econometrics. However, the related industry become interested in market size of the solar salt for food and the growth potential of the market. This study deal with the supply-demand forecasting of solar salt for food in light of industry of solar salt, consumption trends, export-import quantity, etc. This research results indicate that the production quantity will be 222-384 thousand MT, the export quantity will be 498-565 thousand MT, the export quantity will be 2.67-3.62 thousand MT, the consumption quantity will be 767-996 thousand MT.

Changes in Physicochemical Characteristics of Low-salted Kochujang with Natural Preservatives during Fermentation (천연보존제를 첨가한 저염 고추장의 숙성 중 이화학적 성분 변화)

  • Oh, Ji-Young;Kim, Yong-Suk;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.835-841
    • /
    • 2002
  • To reduce the salt content of Korean traditional kochujang, horseradish and mustard powder (1.2%) were added to kochujang ingredients with $4{\sim}6%$ of sodium chloride, and their physicochemical characteristics were monitored with those of the control (10% salt added) during fermentation at $25^{\circ}C$ for 120 days. The pH of kochujang gradually decreased and acidities increased at low-salt concentration. The salt lowered the acid production in proportion to the salt concentration. The amino-type nitrogen in kochujang increased during fermentation at higher proportion with lower salt concentration. Free amino acids showed the same trend as amino-type nitrogen, and their major amino acids were in order of aspartic acid, glutamic acid, and serine. Kochujang containing horseradish or mustard showed superior qualuty than the control, and 6% of salt was the acceptable level for low-salt kochujang preparation.