• Title/Summary/Keyword: salt production

Search Result 752, Processing Time 0.024 seconds

Development and Applications of Membrane Technology in Korea

  • Noh, S.H.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.74-79
    • /
    • 1995
  • In the last 10 years, membrane science and technology in Korea have grown fast in terms of basic research and process applications. Even the first large commercial membrane plant in Korea was an ion-exchange membrane process built in 1975 for the production of table salt with an annual capacity of 150,000 tons of salt, membrane processes could not draw general interests from industry not until 1987 when a reverse osmosis plant for the production of process water with a capacity of 10,000 m$^3$/day was built by Kugdong Petroleum Co. Today, the production of water by RO over the capacity of 140,000 m$^3$/day is in operation or under construction in Korea. Consumption of ultra pure water increases sharply in recent years mainly due to the rapid expansion of semiconductor industry and the introduction of ultra high pressure boilers for power plants.

  • PDF

Effect of Low Salt Concentrations on Microbial Changes During Kimchi Fermentation Monitored by PCR-DGGE and Their Sensory Acceptance

  • Ahmadsah, Lenny S. F.;Min, Sung-Gi;Han, Seon-Kyeong;Hong, Yeun;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2049-2057
    • /
    • 2015
  • Various salt concentrations (1.0%, 1.3%, 1.6%, 1.9%, and 2.1% labeled as sample A, B, C, D, and E, respectively) were investigated for microbial diversity, identification of Lactic Acid Bacteria (LAB) in salted kimchi cabbage, prepared under laboratory conditions. These samples were stored at 4°C for 5 weeks in proper aluminum-metalized pouch packaging with calcium hydroxide gas absorber. A culture-independent method known as polymerase chain reaction - denaturing gradient gel electrophoresis was carried out to identify LAB distributions among various salt concentration samples that had identified 2 Weissella (W. confusa and W. soli), 1 Lactobacillus (Lb. sakei), and 3 Leuconostoc (Lc. mesenteroides, Lc. lactis, and Lc. gelidum) in the overall kimchi samples. The pH, titratable acidity, viable cell counts, and coliform counts were not affected by salt variations. In order to assess sensory acceptance, the conducted sensory evaluation using a 9-point hedonic scale had revealed that samples with 1.3% salt concentration (lower than the manufacturer's regular salt concentration) was more preferred, indicating that the use of 1.3% salt concentration was acceptable in normal kimchi fermentation for its quality and safety. Despite similarities in pH, titratable acidity, viable cell counts, coliform counts, and LAB distributions among the various salt concentrations of kimchi samples, the sample with 1.3% salt concentration was shown to be the most preferred, indicating that this salt concentration was suitable in kimchi production in order to reduce salt intake through kimchi consumptions.

Evaluation of salt level and rigor status on the physicochemical and textural properties of low-fat pork sausages added with sea tangle extract using rapidly chilled pre-rigor pork ham

  • Geon Ho Kim;Koo Bok Chin
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1445-1452
    • /
    • 2023
  • Objective: This study was performed to evaluate the quality characteristics of pork sausage (PS) with sea tangle extract (STE) and rapid chilled pre-rigor muscle (RCPM) for the development of reduced-salt low-fat sausage. Methods: Pre- and post-rigor pork ham muscles were prepared to process PSs. Positive control (reference, REF) using post-rigor muscle were manufactured at a regular-salt level of 1.5%. Fresh and rapid-chilled pre-rigor muscle (FPM and RCPM) were used to manufacture reduced-salt sausages with 0.8% salt. Reduced-salt PSs were prepared with four treatments: FT1 (FPM alone), FT2 (FPM with 5% STE), RT1 (RCPM alone), and RT2 (RCPM with 5% STE). The physicochemical and textural properties of the sausages with reduced-salt levels and RCPM combination were measured to determine if the characteristics of RCPM were similar to those with FPM. Results: The pH values of PS with FPM and RCPM were higher than those of REF with post-rigor muscle. Color values (L*, a*, b*) were not affected by different rigor-states and salt addition level. Textural properties of reduced-salt PSs were similar to those of REF due to the improved functionalities of pre-rigor muscle. RT2 had lower expressible moisture (%) than other treatments with post-rigor muscle and RCPM except for RT1. Conclusion: The addition of STE and RCPM to reduced-salt PS increased the water-holding capacity, which was lower than those of PS with STE using RCPM but similar to those of regular-salt sausage.

Seed Germination, Plant Growth and Antioxidant Capacity of Limonium tetragonum under Different Salt Concentrations (염농도에 따른 갯질경(Limonium tetragonum) 종자의 발아와 식물체의 생장 및 항산화 활성)

  • Jeong, Jae-Hyeok;Hwang, Woon-Ha;An, Sung-Hyun;Jeong, Han-Yong;Lee, Hyeon-Seok;Baek, Jung-Sun;Choi, Kyung-Jin;Lee, Geon-Hwi;Ra, Ji-Eun;Chung, Nam-Jin;Lee, Seung Jae;Yun, Song Joong
    • Korean Journal of Plant Resources
    • /
    • v.30 no.4
    • /
    • pp.364-371
    • /
    • 2017
  • Limonium tetragonum is a halophyte grown naturally in the coastal region in South Korea. This study was conducted to investigate the effects of salt concentrations on seed germination, seedling growth, and antioxidant capacity of L. tetragonum. Seeds were collected from naturally grown plants of L. tetragonum and those at full maturity were used in this experiment. All experiments were performed at 0%, 0.5%, 1.0%, or 2.0% of salt concentrations. Seed germination rate was highest as 86% at $20^{\circ}C$ and followed as higher in order of $25^{\circ}C$, $30^{\circ}C$ and $15^{\circ}C$. The germination rate was about 80% at 0% or 0.5% of salt concentration, but it was very low at the salt concentrations higher than 1%. Growth of L. tetragonum seedlings showed no difference in Hoagland solution containing NaCl in the range of 0% to 1.0% and seedlings survived at 2.0% of NaCl concentration. As the salt concentration increased, the content of $Na^+$ in the shoot increased, but that of $K^+$, $Ca^{{+}{+}}$, or $Mg^{{+}{+}}$ decreased. The antioxidant activity and the content of total polyphenol and total flavonoid in the shoot were similar at 0% and 0.5% of NaCl and were highest at 2.0% of NaCl concentration. In conclusion, performance of seed germination and plant growth of L. tetragonum was highest at 0% and 0.5% of NaCl concentration, and showed no difference in antioxidant activity, total polyphenol contents, and total flavonoid contents at the same salt concentrations.

Changes in the Physico-chemical and Microbial Quality during the Production of Pastırma Cured with Different Levels of Sodium Nitrite

  • Aksu, Muhammet Irfan;Erdemir, Ebru;Cakici, Neslihan
    • Food Science of Animal Resources
    • /
    • v.36 no.5
    • /
    • pp.617-625
    • /
    • 2016
  • Pastırma, a dry-cured meat product, is produced from the whole muscle and/or muscles obtained from certain parts of beef and water buffalo carcasses. The purpose of this study was to determine the effects of different levels of sodium nitrite on changes in the physicochemical and microbial quality during the production of pastırma. The changes in residual nitrite, salt, pH, moisture, thiobarbutiric acid reactive substances (TBARS), colour (L*, a*, b*), total aerobic mesophilic bacteria (TAMB), lactic acid bacteria (LAB), Micrococcus/Staphylococcus (M/S), mould-yeast (M-Y), and Enterobacteriaceae counts of pastırma with 0, 50, 100 and 150 ppm sodium nitrite were determined during the production. The nitrite levels and the production stages had significant effects (p<0.01) on residual nitrite, TBARS, pH, salt, and colour values. The TBARS values of the pastırma with nitrite were significantly lower (p<0.05) than the control. The final TAMB, LAB, M/S, and M-Y counts of pastırma with 150 ppm nitrite were significantly (p<0.05) lower than the control. Also, the a* (relative redness) values of control pastırma were significantly lower (p<0.05) than the pastırma with nitrite. The production stages had a significant effect (p<0.01) on the moisture.

Utilization of Transglutaminase for the Development of Low-fat, Low-salt Sausages and Restructured Meat Products Manufactured with Pork Hams and Loins

  • Chin, K.B.;Chung, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.261-265
    • /
    • 2003
  • This study was performed to determine whether transglutaminase (Aciva-TG, TGase) can be used to reduce the salt level in low-fat sausages and to replace emulsified meats (10%) for the manufacture of restructured meat products (RMP). Pork hams and loins were collected from a local retail market in Gwangju, Korea and used for the manufacture of sausages and RMPs, respectively. TGase at the level of 0.1% can permit the reduction of the salt level from 1.5% to 1.0% in low-fat comminuted sausages without any quality defects, however a crumbly texture was found if the salt level was reduced below 1.0% even though it combined with certain amounts of TGase. No differences in chemical composition and physical properties were observed (p>0.05) among treatments. Approximately 0.3% of TGase can replace 10% emulsified meats, which are normally used for improvement of binding capacity to manufacture RMPs, without quality defects. This study suggests that TGase could be used for the manufacture of low-fat, low-salt functional meat products for the improvement of textural characteristics and binding capacity without adverse effects.

Pulsed Electric Field Effects to Reduce the Level of Campylobacter spp. in Scalder and Chiller Water during Broiler Chicken Processing

  • Shin, Dae-Keun;Martin, Bradely C.;Sanchez-Plata, Marcos X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1314-1317
    • /
    • 2011
  • To evaluate the effects of pulsed electric field (PEF) application on scalder and chiller water on Campylobacter contamination, four different treatments under three different water conditions including hard scalder water ($55^{\circ}C$), soft scalder water ($45^{\circ}C$) and chiller water, were applied as follows: i) a control treatment with no salt and no electric treatment, ii) a PEF only treatment, iii) a PEF treatment with 0.5% salt water, and iv) a PEF treatment with 1% salt water treatment. The use of PEF in hard scalding water showed an effect of reducing Campylobacter when compared to the control during the 200 s timeframe. With the addition of salt, the intervention caused at least 5.81 log CFU/ml reduction of Campylobacter counts after 200 s of PEF exposure. Similar effects were observed under soft scalding conditions. Campylobacter reductions were evident under chilling conditions with up to 2.00 log for PEF only, 5.77 log for PEF+0.5% salt and 2.69 log for PEF+1% salt treatment in water. Therefore, the current PEF setting for the scalder and chiller water can be successfully used to reduce pathogenic loads of Campylobacter on broiler chicken carcasses, and further research may be necessary to apply it in the poultry processing industry.

Hydraulic Property and Solute Breakthrough from Salt Accumulated Soils under Various Head Pressures

  • Lee, Sanghun;Chung, Doug-Young;Hwang, Seon-Woong;Lee, Kyeong-Bo;Yang, Chang-Hyu;Kim, Hong-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.717-724
    • /
    • 2012
  • Salt accumulated soil should be reclaimed to lower salt level for crop production. This study was carried out to investigate the characteristics of water flow and transport of mono and divalent solutes on salt accumulated soils with different head pressures. Saturated hydraulic conductivity was measured by constant and falling head methods with maintaining different head pressures. Saturated hydraulic conductivity was influenced by bulk density and organic matter contents in soils, but it had different elusion patterns between saline and sodic soil. While the quantity of water necessary for reclamation could be varies with soil type, it was considered that the supply of one pore volume of water was affordable and economic. Additional head pressure significantly increased the volume of leachate at a given time and it was more effective at low organic matter soils. The results indicate that additional head pressure would be one of the best irrigation practices on desalination method for salt accumulated soils.