• Title/Summary/Keyword: salt production

Search Result 754, Processing Time 0.029 seconds

Tenderness-related index and proteolytic enzyme response to the marination of spent hen breast by a protease extracted from Cordyceps militaris mushroom

  • Barido, Farouq Heidar;Lee, Sung Ki
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1859-1869
    • /
    • 2021
  • Objective: The effects of a crude protease extracted from Cordyceps militaris (CM) mushrooms on the postmortem tenderization mechanism and quality improvement in spent hen breast were investigated. Methods: Different percentages of the crude protease extracted from CM mushrooms were introduced to spent hen breast via spray marination, and its effects on tenderness-related indexes and proteolytic enzymes were compared to papain. Results: The results indicated that there was a possible improvement by the protease extracted from CM mushroom through the upregulation of endogenous proteolytic enzymes involved in the calpain system, cathepsin-B, and caspase-3 coupled with its nucleotide-specific impact. However, the effect of the protease extracted from CM mushroom was likely dose-dependent, with significant improvements at a minimum level of 4%. Marination with the protease extracted from CM mushroom at this level led to increased protein solubility and an increased myofibrillar fragmentation index. The sarcoplasmic protein and collagen contents seemed to be less affected by the protease extracted from CM mushroom, indicating that substrate hydrolysis was limited to myofibrillar protein. Furthermore the protease extracted from CM mushroom intensified meat product taste due to increasing the inosinic acid content, a highly effective salt that provides umami taste. Conclusion: The synergistic results of the proteolytic activity and nucleotide-specific effects following treatments suggest that the exogenous protease derived from CM mushroom has the potential for improving the texture of spent hen breast.

Isolation of Multi-Abiotic Stress Response Genes to Generate Global Warming Defense Forage Crops

  • Ermawati, Netty;Hong, Jong Chan;Son, Daeyoung;Cha, Joon-Yung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.4
    • /
    • pp.242-249
    • /
    • 2021
  • Forage crop management is severely challenged by global warming-induced climate changes representing diverse a/biotic stresses. Thus, screening of valuable genetic resources would be applied to develop stress-tolerant forage crops. We isolated two NAC (NAM, ATAF1, ATAF2, CUC2) transcription factors (ANAC032 and ANAC083) transcriptionally activated by multi-abiotic stresses (salt, drought, and cold stresses) from Arabidopsis by microarray analysis. The NAC family is one of the most prominent transcription factor families in plants and functions in various biological processes. The enhanced expressions of two ANACs by multi-abiotic stresses were validated by quantitative RT-PCR analysis. We also confirmed that both ANACs were localized in the nucleus, suggesting that ANAC032 and ANAC083 act as transcription factors to regulate the expression of downstream target genes. Promoter activities of ANAC032 and ANAC083 through histochemical GUS staining again suggested that various abiotic stresses strongly drive both ANACs expressions. Our data suggest that ANAC032 and ANAC083 would be valuable genetic candidates for breeding multi-abiotic stress-tolerant forage crops via the genetic modification of a single gene.

Disinfection of various materials with 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride in hatchery facilities

  • Kim, Yu-Jin;Kim, Jun-Beom;Song, Chang-Seon;Nahm, Sang-Soep
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.631-637
    • /
    • 2022
  • Objective: Surface disinfection is important in the proper running of livestock farms. However, disinfection of farm equipment and facilities is difficult because they are made of different materials, besides having large surface areas and complex structures. 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (Si-QAC) is a quaternary ammonium salt-based disinfectant that attaches to various surfaces by forming covalent bonds and maintains its disinfecting capacity for a considerable time. Our aim was to evaluate the potential use of Si-QAC for disinfection of farm equipment and facilities. Methods: The short- and long-term antimicrobial and antiviral effects of Si-QAC were evaluated in both laboratory and farm settings using modified quantitative assessment method based on the standard operating procedures of the United States Environmental Protection Agency. Results: Si-QAC was highly effective in controlling the growth of the Newcastle disease virus and avian pathogenic Escherichia coli. Electron microscopy revealed that the mechanism underlying the disinfection activity of Si-QAC was associated with its ability to damage the outer membrane of the pathogen cells. In the field test, Si-QAC effectively reduced viral contamination of surfaces of equipment and space. Conclusion: Our results suggest that Si-QAC has great potential as an effective chemical for disinfecting farm equipment and facilities. This disinfectant could retain its disinfection ability longer than other commercial disinfectants and contribute to better farm biosecurity.

Anti-inflammatory, Anti-oxidative and Anti-bacterial Activities of the Constituents Extracted from Leaves of Talipariti hamabo

  • Xu Hui Liang;Jung Eun Kim;Nam Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.145-149
    • /
    • 2023
  • Talipariti hamabo is a plant growing around salt marshes in the Lava Coast region of Jeju Island, Korea. In this study, the extract of T. hamabo leaves was investigated for the anti-inflammatory, anti-oxidative and anti-bacterial activities and their active constituents were identified. In the anti-inflammatory tests using lipopolysaccharide-stimulated RAW264.7 cells, the ethyl acetate (EtOAc) fraction inhibited the nitric oxide production without causing cell toxicity. Moreover, the EtOAc fraction reduced pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6) as well as prostaglandin E2. In the anti-oxidative studies with DPPH and ABTS+ radicals, potent scavenging activities were observed in the EtOAc and n-butanol fractions. Upon the anti-bacterial tests using Staphylococcus epidermidis, EtOAc and n-butanol fractions exhibited good activities. Through the phytochemical studies on EtOAc fraction, three components were isolated by repeated column chromatography; oleic acid (1), p-hydroxyphenethyl-trans-ferulate (2), nicotiflorine (3). Based on these results, the extract of T. hamabo leaves can be developed as natural resources for cosmetic applications.

Development and Quality Assessment of Healthy Bread using Korean Pine Leaf Powder

  • Eunbin Park;Soo In Ryu;Jean Kyung Paik
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.5
    • /
    • pp.387-394
    • /
    • 2023
  • With the advancement and diversification of the bread industry, eco-friendly products with less sugar and salt, and containing functional ingredients are being developed. To develop healthy bread, Korean pine leaf powder was added in different proportions (0%, 1%, 3%, 5%, and 7%), and the quality characteristics of the bread, namely height, moisture, color value, texture, antioxidant property, and sensory characteristics were evaluated. As the amount of leaf powder was increased in the bread, L-value in the range of 53.45~85.05 (p<0.001) and adhesiveness in the range of 0.13~0.32 mJ (p<0.001) decreased significantly, whereas b-value in the range of 16.75~30.74 (p<0.001), total polyphenol content in the range of 466.83~669.13 ug/mL, ABTS- in the range of 0.46~43.23%, DPPH-radical in the range of 1.39~45.76%, scavenging capacities (p<0.001), color in the range of 3.27~5.40 (p=0.017) and texture in the range of 4.33~4.80 (p=0.006) preferences increased significantly. This study could increase the utilization of Korean pine leaf and the production of healthy food with antioxidant properties.

Hibiscus hamabo Exerts Anti-inflammatory Effects in Lipopolysaccharide-induced RAW 264.7 Cells

  • Seo-Hyun Yun;Ji-Eun Yang;Jong-Yun Im;So-Yeon Han;Hye-Jeong Park;Jeong-Yong Park;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park;Ji-Sun Mun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.55-55
    • /
    • 2021
  • Hibiscus hamabo is a deciduous shrub that grows around salt marshes and is considered a semi-mangrove plant found in Asia. There are no studies on the biological activity of H. hamabo except for studies on the anthocyanin content. We investigated the anti-inflammatory effects of H. hamabo extract (HHE) on lipopolysaccharide (LPS)-induced RAW 264.7 cells. As nuclear factor-kappa B (NF-kB) induced by LPS moves into the nucleus, inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and inflammatory cytokines are promoted and the inflammatory reaction begins. The nitric oxide (NO) production decreased by the treatment of HHE. Moreover, mRNA levels of inflammation-related cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β, were significantly suppressed by HHE. Similarly, the expressions of iNOS and COX-2 were also decreased. The phosphorylation of p65, a subunit of NF-κB, was suppressed by HHE. As a result, HHE can be used as an effective natural material for the anti-inflammatory agent.

  • PDF

Microbiological Studies of Korean Native Soy-sauce Fermentation -A Study on the Microflora Changes during Korean Native Soy-sauce Fermentation- (한국재래식(韓國在來式) 간장의 발효미생물(醱酵微生物)에 관(關)한 연구(硏究)(제2보(第二報)) -한국재래식(韓國在來式) 간장의 담금중(中)에 있어서의 발효미생물군(醱酵微生物群)의 소장(消長)에 관(關)한 연구(硏究)-)

  • Lee, Woo-Jin;Cho, Duck-Hiyon
    • Applied Biological Chemistry
    • /
    • v.14 no.2
    • /
    • pp.137-148
    • /
    • 1971
  • Studies were carried out to investigate the main fermentation microorganisms and their flora changes during Korean native soy-sauce fermentation. Korean native Maeju loaves collected from 5 Do's were separated into surface and inner parts. Four different soy-sauces-the surface part Maeju fermented soy-sauce, the inner part, the surface and inner part combined Maeju fermented soy-sauce, and the semi-Japanese type soy-sauce were fermented and the changes of fermentation microorganism flora and the various chemical components during the period of their fermentations were studied. Besides, 14 home-made soy-sauces collected from 14 different places all over Korea were examined in comparison with the laboratory soy-sauces and to determine the characteristics of Korean native soy-sauce. The results were as follows: 1. The main microorganisms in Korean native soy-sauce fermentation were determined as; Aerobic bacteria: Bacillus subtilis, Bacillus pumilus Lactic acid bacteria: Pediococcus halophilus, Leuconostoc mesenteroides Yeasts: Torulopsis datila, Saccharomyces rouxii 2. Microflora changes during Korean native soy-sauce fermentation were as follows; Aerobic bacteria increased until the 2nd week of fermentation and then gradually decreased. The lactic acid bacteria increased until the 3rd week, after which decreased. When the lactic acid fermentation lowered the pH value to below the 5.4, yeasts were able to grow and participate the fermentation. As the production of organic acids amounted, to a certain height, the growth of all microorganisms lead to the period of decline or death at about the 2nd month of fermentation. After boiling of soy-sauce most microorganisms except a few of Bacillus sp. disappeared. Occosionally yeasts and lactic acid bacteria survived depending upon the composition of soy-sauce. 3. Changes of general chemical components influencing the microflora were investigated for the period of Korean native soy-sauce fermentation. Tetal acidity, salt concentration and total nitrogen were increasing steadily over the entire period of fermentation. pH values were dropping to a certain degree of about 4.5. Salt concentration and pH value seemed to be the important factors influencing the microflora. 4. The microflora were influenced by chemical components of soy-sauce. Aerobic bacteria were able to survive in all soy-sauce as they made spores. Growth of lactic acid bacteria was inhited at 23-26% of salt concentration and pH 4.8. Soy-sauce yeasts started to grow only at pH below 5.4 and seemed to be inhibited at around 26% of salt concentration under pH 4.5-4.7. 5. The open kettle boiling of soy-sauce, the characteristic process of Korean native soy-sauce manufacturing, was effective to sterilize microorganisms, increase the salt concentration, and coagulate proteins. 6. The average viable cell counts of microorganism found in collected samples of home-made Korean native soy-sauces were; Aerobic bacteria: $53{\times}10^2\;cell/ml$ Lactic acid bacteria: 34 cell/ml Yeasts: 14 cell/ml The average values of chemical compositions of samples of home-made Korean native soy-sauce were; Salt concentration: 28.9% pH value: 4.79 Total acidity(lactic acid): 0.91g/100ml Total nitrogen: 1.09g/100ml

  • PDF

THE TASTE COMPOUNDS FERMENTED ACETES CHINENSIS (새우젓의 정미성분에 관한 연구)

  • CHUNG Seung-Yong;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.79-110
    • /
    • 1976
  • In Korea fermented fish and shellfish have traditionally been favored and consumed as seasonings or further processed for fish sauce. Three major items in production quantity among more than thirty kinds which are presently available in the market are fermented anchovy, oyster and small shrimp. They are usually used as a seasoning mixture of Kimchi in order to provide a distinctive flavor. Fermented small shrimp, Acetes chinensis is most widely and largely used ana occupies an important position in food industry of this country. But no study on its taste compounds has been reported. This study was attempted to establish the basic data for evaluating taste compounds of fermented small shrimp. The changes of such compounds during fermentation as free amino acids, nucleotides and their related compounds, TMAO, TMA, and betaine were analysed. In addition, change in microflora during the fermentation under the halophilic circumstance was also investigated. The samples were prepared with three different salt contents of 20, 30 and $40\%$ to obtain the proper degree of fermentation at a controlled tempeature of $20{\pm}2^{\circ}C$. The results are summarized as follows: Volatile basic nitrogen increased rapidly until 108 days of fermentation and afterwards it tended to increase slowly. Amino nitrogen also increased rapidly until 43 days of fermentation and then increased slowly. Extract nitrogen increased and marked the maximum value at 72 day fermentation and then decreased slowly. ADP, AMP and IMP tended to degrade rapidly while hypoxanthine increased remarkably at 27 day fermentation but slightly decreased at 72 day fermentation. It is presumed that the characteristic flavor of fermented small shrimp might be attributed to the relatively higher content of hypoxanthine. In the free amino acid composition of fresh small shrimp abundant amino acids were proline, arginine, alanine, glycine, lysine, glutamic acid, leucine, valine and threonine in order. Such amino acids like serine, methionine, isoleucine, phenylalanine, aspartic acid, tyrosine and histidine were poor. In small shrimp extract, proline, arginine, alanine, glycine, lysine and glutamic acid were dominant holding $18.5\%,\;14.6\%,\;10.8\%,\;8.7\%,\;8.1\%\;and\;7.7\%$ of total free amino acids respectively. The total free amino acid nitrogen in fresh small shrimp was $63.9\%$ of its extract nitrogen. The change of free amino acid composition in the extract of small shrimp during fermentation was not observed. Lysine, alanine glutamic acid, proline, glycine and leucine were abundant in both fresh sample and fermented products. The increase of total free amino acids during 72 day fermentation reached approximately more than 2 times as compared with that of fresh sample and then decreased slowly. Fermented small shrimp with $40\%$ of salt was too salty to be commercial quality as the results of organoleptic test showed. It is found that 72 day fermentation with $20\%\;and\;30\%$ of salt gave the most favorable flavor. It is convinced that the characteristic flavor of fermented small shrimp was also attributed to such amino acids as lysine, proline, alanine, glycine and serine known as sweet compounds, as glutamic acid with meaty taste, and as leucine known as bitter taste. The amount of betaine increased during fermentation and reached the maximum at 72 day fermentation and then decreased slowly TMA increased while TMAO decreased during fermentation. The amount of TMAO nitrogen in fermented small shrimp was $200mg\%$ on moisture and salt free base. Betaine and TMAO known as sweet compounds were abundant in fermented small shrimp. It is supposed that these compounds could also play a role as important taste compounds of fermented small shrimp. At the initial stage of fermentation, Achromobacter, Pseudomonas, Micrococcus denitrificans which belong to marine bacteria were isolated. After 40 day fermentation, they disappeared rapidly while Halabacterium, Pediococcus, Sarcian, Micrococcus morrhuae and the yeasts such as Saccharomyces sp. and Torulopsis sp. dominated. It is concluded that the most important taste compounds of fermented small shrimp were amino acids such as lysine, proline, alanine, glycine, serine, glutamic acid, and leucine, betaine, TMAO and hypoxanthine.

  • PDF

Fertilizer Management Practices with Rice Straw Application for Improving Soil Quality in Watermelon Monoculture Greenhouse Plots (시비관리 및 생 볏짚 처리가 수박연작 시설재배지 토양에 미치는 영향)

  • Ahn, Byung-Koo;Lee, Young-Han;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.75-82
    • /
    • 2010
  • Indoor cultivation plots for watermelon plant mostly have salt-accumulation problem because of continuous cropping especially with the heavy applications of chemical fertilizers. Thus, this study was conducted to investigate selected soil properties and watermelon growth condition as affected by the application of different farming practices in the salt-affected soils of greenhouse plots used for continuous watermelon production. Five different practice conditions in the experimental plots were applied, 1) a conventional farming practice (CFP), 2) a nitrogen-phosphorus-potassium (NPK) fertilizer management practice (FMP), and 3) the FMP with different amounts (5, 10, and 15 ton $ha^{-1}$)of fresh rice straw treatments (FMP-RS), for three years of study. As comparing with CFP plots, soil organic matter content gradually increased during the experimental years, whereas it decreased in the FMP only plot. Soil pH was not changed in the CFP and FMP plot, but it declined in the FMP-RS plots; however, it increased again from the third year in the FMP-RS plots with applying 10 and 15 ton $ha^{-1}$ of RS treatments. The concentrations of exchangeable cations, $Ca^{2+}$ and $Mg^{2+}$, except $K^+$, and water-soluble anions, ${NO_3}^-$, $Cl^-$, ${SO_4}^{2-}$ and ${PO_4}^{3-}$, markedly decreased in FMP and FMP-RS plots. In particular, the application of rice straw tended to significantly decrease the ion concentrations, especially most anions, in the first year, but there was no more decrease in the second and third study years. With relation to the ion concentrations, the changes of electrical conductivity (EC) after applying the management practices showed very similar to those of the ion concentrations. In addition, incidence of withered watermelon plant after applying the management practices dramatically declined from approximately 20% in the CFP plot to 3.5% in the FMP-RS plots. Water melon fruit weight was also improved by the management practices, especially FMP-RS. Therefore, the fertilizer and/or fresh rice straw application management practices are beneficial to improve salt-affected soils and watermelon plant growth condition.

Comparison of Statistical Methods for Optimization of Salts in Medium for Production of Carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a Recombinant E. coli JM109/DL-3 (Bacillus amyloliquefaciens DL-3의 carboxymethylcellulase를 재조합 균주 E. coli JM109/DL-3에서 생산하는 배지의 염 농도를 최적화하기 위한 통계학적 실험 방법의 비교)

  • Lee, You-Jung;Kim, Hye-Jin;Gao, Wa;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1205-1213
    • /
    • 2011
  • The optimal concentrations of salts in medium for cell growth and the production of carboxymethylcellulase (CMCase) by a recombinant E. coli JM109/DL-3 were established using two statistical methods: orthogonal array method (OAM) and response surface method (RSM). The analysis of variance (ANOVA) of data based on OAM indicated that $K_2HPO_4$ gave maximum sum of square (S) and percentage contribution (P) for cell growth as well as production of CMCase. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$, and $(NH_4)_2SO_4$ in medium for cell growth extracted by Qualitek-4 (W32b) Software were 10.0, 1.0, 0.2, and 0.6 g/l, respectively, whereas those for the production of CMCase by E. coli JM109/DL-3 were 5.0, 1.0, 0.4, and 0.6 g/l. The analysis of variance (ANOVA) resulting from RSM indicated that a highly significant salt for cell growth was $K_2HPO_4$ ("probe>F" less than 0.0001), whereas $K_2HPO_4$ and $MgSO_4{\cdot}7H_2O$ were significant for the production of CMCase. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$, and $(NH_4)_2SO_4$ for cell growth extracted by Design Expert Software were 7.44, 1.08, 0.22, and 0.88 g/l, respectively, whereas those for production of CMCase were 5.84, 0.69, 0.28, and 0.54 g/l. The optimal concentrations of salts and their influences on cell growth and production of CMCase extracted by OAM were almost the same as those by RSM. Production of CMCase by a recombinant E. coli JM109/DL-3 under optimized concentration of salts was 1.93 times higher than that by Bacillus amyloliquifaciens DL-3.