• 제목/요약/키워드: salt analysis

검색결과 1,379건 처리시간 0.026초

Recovery of Sodium Sulfate from Farm Drainage Salt and Using It in Direct Dyeing of Cotton - Analysis of Color Difference -

  • Jiyoon Jung
    • The International Journal of Costume Culture
    • /
    • 제4권1호
    • /
    • pp.18-24
    • /
    • 2001
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California, exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. In searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value -added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The results indicated that sodium sulfate could be produced from the salt and could be purified by a recrystalization method in a temperature range within the highest and lowest daily temperatures in summer in the alley. The recovered sodium sulfate samples, with purities ranging from 67% to 99.91, were compared with commercially available sodium sulfate in direct dyeing of cotton fabrics. The salt samples recovered from Mendata, California (〉98.8% sodium sulfate) cause little color difference in the dyeing with selected direct dyes, and the purified salt (Ⅲ) (99.91% sodium sulfate) is more applicable for direct dyeing of cotton fabrics if it has no other toxic effects. The recovered sodium sulfate from certain areas in the valley could not be employed in direct dyeing due to the high level of impurities in it.

  • PDF

Fermentative Bio-Hydrogen Production of Food Waste in the Presence of Different Concentrations of Salt (Na+) and Nitrogen

  • Lee, Pul-eip;Hwang, Yuhoon;Lee, Tae-jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.283-291
    • /
    • 2019
  • Fermentation of food waste in the presence of different concentrations of salt ($Na^+$) and ammonia was conducted to investigate the interrelation of $Na^+$ and ammonia content in bio-hydrogen production. Analysis of the experimental results showed that peak hydrogen production differed according to the ammonia and $Na^+$ concentration. The peak hydrogen production levels achieved were (97.60, 91.94, and 49.31) ml/g COD at (291.41, 768.75, and 1,037.89) mg-N/L of ammonia and (600, 1,000, and 4,000) $mg-Na^+/L$ of salt concentration, respectively. At peak hydrogen production, the ammonia concentration increased along with increasing salt concentration in the medium. This means that for peak hydrogen production, the C/N ratio decreased with increasing salt content in the medium. The butyrate/acetate (B/A) ratio was higher in proportion to the bio-hydrogen production (r-square: 0.71, p-value: 0.0006). Different concentrations of $Na^+$ and ammonia in the medium also produced diverse microbial communities. Klebsiella sp., Enterobacter sp., and Clostridium sp. were predominant with high bio-hydrogen production, while Lactococcus sp. was found with low bio-hydrogen production.

Distribution of Zirconium Between Salt And Bismuth During A Separation From Rare Earth Elements By A Reductive Extraction

  • S. W. Kwon;Lee, B. J.;B. G. Ahn;Kim, E. H.;J. H. Yoo
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 Proceedings of the 4th Korea-China Joint Workshop on Nuclear Waste Management
    • /
    • pp.165-169
    • /
    • 2004
  • It was studied on the reductive extraction between the eutectic salt and Bi metal phases. The solutes were zirconium and the rare earth elements, where zirconium was used as the surrogate for the transuranic(TRU) elements. All the experiments were performed in a glove box filled with argon gas. Two types of experimental conditions were used -high and low initial solute concentrations in salt. Li-Bi alloy was used as a reducing agent to reduce the high chemical activity of Li. The reductive extraction characteristics were examined using ICP, XRD and EPMA analysis. Zirconium was successfully separated from the rare earth elements by the reductive extraction method. The LiF-NaF-KF system was favorable among the fluoride salt systems, whereas the LiCl-KCl system was favorable among the chloride salt systems. When the solute concentrations were high, intermetallic compounds were found near the salt-metal interface.

  • PDF

Molecular dynamics study of ionic diffusion and the FLiNaK salt melt structure

  • A.Y. Galashev
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1324-1331
    • /
    • 2023
  • In the present work, we carried out a molecular dynamics study of the kinetic properties of the FLiNaK molten salt, as well as a detailed study of the structure of this salt melt. The high value of the self-diffusion coefficient of fluorine ions is due to the large number of Coulomb repulsions between the most numerous negative ions. The calculated values of shear viscosity are in good agreement with the experimental data, as well as with the reference data obtained on the basis of finding the most reliable data. The total and partial functions of the radial distribution are calculated. According to the statistical analysis, fluorine ions have the greatest numerical diversity in the environment of similar ions, and sodium ions with the lowest representation in FLiNaK, have the least such diversity. For the subsystem of fluorine ions, the rotational symmetry of the fifth order is the most pronounced. Some of the fluorine ions form linear chains consisting of three atoms, which are not formed for positive ions. The results of the work give an understanding of the behavior molten FLiNaK under operating conditions in a molten salt reactor and will find application in future studies of this molten salt.

방사선 유도 내염성 증진 사료용 옥수수 돌연변이체 특성 분석 (Characterization of a Gamma Radiation-Induced Salt-Tolerant Silage Maize Mutant)

  • 조철오;김경화;최만수;전재범;서미숙;정남희;진민아;손범영;김둘이
    • 한국육종학회지
    • /
    • 제51권4호
    • /
    • pp.318-325
    • /
    • 2019
  • 식물은 다양한 환경 스트레스에 적응하기 위해 스트레스 내성 유전자의 발현과 자연 돌연변이를 통해 외부 환경 및 자극에 대한 반응 특성을 강화시켜 왔다 본 연구는 사료용 옥수수를 대상으로 감마선을 이용하여 돌연변이 집단을 구축하고 내염성이 증대된 계통을 개발하고자 수행되었다. 140RS516은 NaCl 처리 조건에서 대조군인 KS140과 비교하여 증가된 염 스트레스 내성을 보였다. 감마선에 의한 다양한 유전변이를 보인 140RS516 식물체는 염 스트레스 조건에서 대조군보다 높은 발아율과 생장, 기공전도도 그리고 proline함량을 나타냈으며, 내염성에 관여하는 유전자들의 발현이 증가하였다. 따라서 본 연구를 통해 개발된 140RS516 옥수수는 간척지 염화토양과 같이 불량한 환경에서 작물 재배 및 생산이 가능한 내염성 품종을 개발하기 위한 육종 소재로 활용될 수 있을 것이다.

염수환경에 노출된 유리섬유직물/페놀 복합재의 내구성 평가 (Evaluation of Durability for Glass fabric/Phenolic Composites under Salt Water Environment)

  • 윤성호
    • Composites Research
    • /
    • 제18권4호
    • /
    • pp.27-34
    • /
    • 2005
  • 염수시험기를 통해 6개월 동안 염수분무시험과 염수침수시험을 수행함으로써 염수환경에 노출된 유리섬유직물페놀 복합재의 내구성을 실험적으로 조사하였다. 이때 염수환경에 노출된 시간에 따른 인장특성, 굽힘특성, 전단특성 등의 기계적 특성을 평가하고 동역학 측정장치를 적용하여 저장전단탄성계수. 손실전단탄성계수, tan $\delta$ 등의 열분석 특성을 측정하였다. 또한 적외선 분광분석기를 적용하여 염수환경에의 노출시간에 따른 화학구조의 변화를 분석하였다. 연구결과에 따르면 기계적 특성과 열분성 특성은 노출시간에 민감하게 변하며 노출시간이 길어짐에 따라 점차 감소되는 양상을 나타낸다. 그러나 강성의 경우에는 염수환경에 노출되면 복합재의 가소화로 인해 노출의 초기에는 감소하기 시작하고 노출시간이 길어짐에 따라 복합재의 팽창, 수지의 소성화, 가교 결합의 증가 등으로 인해 다소 증가하는 양상을 나타내지만 노출시간이 더욱 더 길어지면 점차 감소할 것으로 추측된다. 또한 FT-IR 선도에서의 피크 형상과 위치는 노출시간에 큰 영향을 받지 않으며 피크 세기는 노출시간에 따라 달라진다. 마지막으로 염수침수환경은 염수분무환경에 비해 유리섬유직물/복합재의 내구성에 더욱 심각한 영향을 미침을 알 수 있었다.

간척지 토양의 제염과정중 수리전도도의 변화 (Changes of Hydraulic Conductivity During Desalmization of Reclaimed Tidelands)

  • 구자웅;은종호
    • 한국농공학회지
    • /
    • 제30권4호
    • /
    • pp.85-93
    • /
    • 1988
  • This laboratory study was carried out in order to produce fundamental data for analyzing salt movement and desalinization effects, using samples of silt loam soil collected in Gyehwado and Daeho reclaimed tidelans, and samples of silty clay loam soil collected in Kimie tideland. Desalinization experiments with gypsum treatment were performed to analyze changes of the hydraulicc conductivity with changes of the soil property and the salt concentration during the desalinization of reclaimed tideland soils by leaching through the subsufface drainage, and correlations between factors infl uencing the reclamation of salt affected soils were analyzed by the statistical method. The results were summarized as follows: 1. The reclaimed tideland soils used in this study were saline-sodic soils with the high exchangeable sodium percentage and the high electrical conductivity. 2. Changes of the hydraulic conductivity with the amount of leaching water and the leaching time elapsed were affected by the amount of gypsum except exchangeable sodium and clay contents. The regression equation between the depth of water leached per unit depth of soil (Dw / Ds : X) or the square root of the leaching time elapsed (T $^1$ $^2$ : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a . bx. 3. The more exchangeable sodium and clay contents regardless of the amount of gypsum, the more the leaching time was required until a given volume of water was leached through the soil profile. The regression analysis showed that the relationship between the depth of water leached per unit depth of soil(Dw /Ds:X) and the square root of the leaching time elapsed(T$^1$$^2$ :Y) could be described by Y=a . Xb. 4. The hydraulic conductivity was influenced to a major degree by the salt concentration provided that the electrical conductivity was below 10 mmhos / cm during the desalinization of reclaimed tideland soils. The regression equation between the relative electrical conductivity ( ECr : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a + b . X-$^1$. 5. In conclusion, the hydraulic conductivity, leaching requirements and the leaching time elapsed can be estimated when the salt concentration decreases to a certain level during the desalinization of reclaimed tidelands, and the results may be applied to the analysis of salt movement and desalinization effects.

  • PDF

Spatial distribution of halophytes and environment factors in salt marshes along the eastern Yellow Sea

  • Chung, Jaesang;Kim, Jae Hyun;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • 제45권4호
    • /
    • pp.264-276
    • /
    • 2021
  • Background: Salt marshes provide a variety of ecosystem services; however, they are vulnerable to human activity, water level fluctuations, and climate change. Analyses of the relationships between plant communities and environmental conditions in salt marshes are expected to provide useful information for the prediction of changes during climate change. In this study, relationships between the current vegetation structure and environmental factors were evaluated in the tidal flat at the southern tip of Ganghwa, Korea, where salt marshes are well-developed. Results: The vegetation structure in Ganghwa salt marshes was divided into three groups by cluster analysis: group A, dominated by Phragmites communis; group B, dominated by Suaeda japonica; and group C, dominated by other taxa. As determined by PERMANOVA, the groups showed significant differences with respect to altitude, soil moisture, soil organic matter, salinity, sand, clay, and silt ratios. A canonical correspondence analysis based on the percent cover of each species in the quadrats showed that the proportion of sand increased as the altitude increased and S. japonica appeared in soil with a relatively high silt proportion, while P. communis was distributed in soil with low salinity. Conclusions: The distributions of three halophyte groups differed depending on the altitude, soil moisture, salinity, and soil organic matter, sand, silt, and clay contents. Pioneer species, such as S. japonica, appeared in soil with a relatively high silt content. The P. communis community survived under a wider range of soil textures than previously reported in the literature; the species was distributed in soils with relatively low salinity, with a range expansion toward the sea in areas with freshwater influx. The observed spatial distribution patterns may provide a basis for conservation under declining salt marshes.

다층구조확산을 고려한 제설제에 노출된 콘크리트의 염화물 해석 (Analysis for Chloride Penetration in Concrete under Deicing Agent using Multi Layer Diffusion)

  • 서지석;권성준
    • 한국콘텐츠학회논문지
    • /
    • 제16권4호
    • /
    • pp.114-122
    • /
    • 2016
  • 콘크리트는 경제적이며 고내구성 건설재료이지만, 염해에 노출된 경우 매립된 철근의 부식으로 인해 내구성에 대한 문제가 발생한다. 최근 들어 동절기에 제설제가 많이 사용되고 있는데, 제설제의 사용은 콘크리트 표면에 미세균열과 박리를 증가시키고 용해된 제설제는 매립된 철근의 부식을 야기한다. 기존의 염화물 지배방정식인 Fick's 2nd Law의 해석기법은 표면이 열화된 콘크리트의 염해특성을 평가하지 못하므로 이에 대한 고려가 필요하다. 본 연구에서는 콘크리트 다층구조 확산 모델과 시간의존성 염화물 확산을 이용하여 제설제에 노출된 콘크리트의 염화물 해석기법을 제안하였다. 이를 위해 18년 경과된 콘크리트 도로교의 염해실태를 분석하였으며, 역해석을 통하여 표면열화깊이 및 열화된 콘크리트 층의 증가된 염화물 확산성을 평가하였다. 제안된 기법은 30MPa 콘크리트에서 12.5~15.0mm 열화깊이와 2배 증가된 열화층의 염화물 확산성을 나타내었다. 본 해석기법은 표면열화 및 표면 강화 등 2개의 다른 확산성을 가진 콘크리트의 염화물 거동을 평가하는데 효과적으로 적용될 수 있다.

Expression analysis and characterization of rice oligopeptide transport gene (OsOPT10) that contributes to salt stress tolerance

  • Jung, Yu-Jin;Lee, In-Hye;Han, Kyung-Hee;Son, Cho-Yee;Cho, Yong-Gu;Lee, Myung-Chul;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • 제37권4호
    • /
    • pp.483-493
    • /
    • 2010
  • Knock-out of a gene by insertional mutagenesis is a direct way to address its function through the mutant phenotype. Among ca. 15,000 gene-trapped Ds insertion lines of rice, we identified one line from selected sensitive lines in highly salt stress. We conducted gene tagging by TAIL-PCR, and DNA gel blot analysis from salt sensitive mutant. A gene encoding an oligopeptide transporter (OPT family) homologue was disrupted by the insertion of a Ds transposon into the OsOPT10 gene that was located shot arm of chromosome 8. The OsOPT10 gene (NP_001062118.) has 6 exons and encodes a protein (752 aa) containing the OPT family domain. RT-PCR analysis showed that the expression of OsOPT10 gene was rapidly and strongly induced by stresses such as high-salinity (250 mM), osmotic, drought, $100\;{\mu}M$ ABA. The subcellular localization assay indicated that OsOPT10 was localized specifically in the plasma membrane. Overexpression of OsOPT10 in Arabidopsis thaliana and rice conferred tolerance of transgenic plants to salt stress. Further we found expression levels of some stress related genes were inhibited in OsOPT10 transgenic plants. These results suggested that OsOPT10 might play crucial but differential roles in plant responses to various abiotic stresses.