• 제목/요약/키워드: salinity stress

검색결과 274건 처리시간 0.032초

Effect of Treatment with Selected Plant Extracts on the Physiological and Biochemical Parameters of Rice Plants under Salt Stress

  • Hyun-Hwa Park;Pyae Pyae Win;Yong-In Kuk
    • 한국작물학회지
    • /
    • 제69권1호
    • /
    • pp.1-14
    • /
    • 2024
  • High soil salinity is the most severe threat to global rice production as it causes a significant decline in rice yield. Here, we investigated the effects of various plant extracts on rice plant stress associated with high salinity. Additionally, we examined various physiological and biochemical parameters such as growth, photosynthetic activity, chlorophyll content, and lipid peroxidation - in rice plants after treatment with selected plant extracts under salt stress conditions. Of the 11 extracts tested, four - soybean leaf, soybean stem, moringa (Moringa oleifera), and Undaria pinnatifida extracts - were found to effectively reduce salt stress. A reduction of only 3-23% in shoot fresh weight was observed in rice plants under salt stress that were treated with these extracts, compared to the 43% reduction observed in plants that were exposed to stress but not given plant extract treatments (control plants). The effectiveness varied with the concentration of the plant extracts. Water content was higher in rice plants treated with the extracts than in the control plants after 6 d of salt stress, but not after 4 d of salt stress. Although photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), and the content of pigments (chlorophyll and carotenoid) varied based on the types and levels of stress and the extracts that the rice plants were treated with, generally, photosynthetic efficiency and pigment content were higher in the treated rice compared to control plants. Reactive oxygen species (ROS), such as superoxide radicals, hydrogen peroxide (H2O2), and malondialdehyde (MDA), increased as the duration of stress increased. ROS and MDA levels were lower in the treated rice than in the control plants. Proline and soluble sugar accumulation also increased with the duration of the stress period. However, proline and soluble sugar accumulation were lower in the treated rice than in the control plants. Generally, the values of all the parameters investigated in this study were similar, regardless of the plant extract used to treat the rice plants. Thus, the extracts found to be effective can be used to alleviate the adverse effects of stress on rice crops associated with high-salinity soils.

염분변화에 따른 붉바리(Epinephelus akaara)와 대왕붉바리 (E. bruneus ♀×E. lanceolatus ♂)의 성장, 생존 및 스트레스 반응 (Effects of Salinity on the Growth, Survival and Stress Responses of Red Spotted Grouper Epinesphelus akaara and Hybrid Grouper E. akaara ♀ × E. lanceolatus ♂)

  • 임상구;한상범;임한규
    • 한국수산과학회지
    • /
    • 제49권5호
    • /
    • pp.612-619
    • /
    • 2016
  • In this study, we crossbred Epinephelus akaara and E. lanceolatus to produce a hybrid grouper with faster growth and adaptation to domestic aquaculture environments. The plasma cortisol and glucose levels and osmoregulation (stress response indicators) of the hybrid grouper, E. akaara ♀ × E. lanceolatus ♂, were investigated under several salinity levels (32, 24, 16, and 8 psu). The body lengths and weights of E. akaara (8.2 ± 0.1 cm, 8.3 ± 0.4 g) and the hybrid (8.6 ± 0.1 cm, 10.0 ± 0.4 g) were similar at the start of the experiment, but were significantly different at the end of the experiment. Juveniles of both E. akaara and the hybrid showed greater weight gain, specific growth, and feed conversion rate (FCR) under low salinity of 16 psu. Under the 8 psu treatment, the juvenile E. akaara all died, while the hybrid juveniles survived. Plasma cortisol levels were not affected by lower salinity in both species. The above results indicate that the hybrid is more tolerant of low salinity than is E. akaara, although both species exhibited higher growth and FCR at 16 psu, lower than the salinity of natural seawater. Thus, juveniles of both E. akaara and the hybrid can be more effectively cultured in brackish areas or waters with salinity lower than that of seawater.

급격한 저염분 노출에 따른 참돔 Pagrus major 치어의 단기 행동반응 및 내성 한계에 관한 연구 (Short-term behavioral responses and tolerance limits of red seabream Pagrus major fingerlings following sudden low salinity exposure)

  • 윤성진
    • 환경생물
    • /
    • 제39권4호
    • /
    • pp.495-506
    • /
    • 2021
  • In this study, using a continuous behavior measurement technique, the short-term behavioral responses and tolerance limits of red seabream Pagrus major fingerlings to sudden exposure to low salinity in a controlled environment were observed. The activity of the fingerlings suddenly exposed to 21.4, 17.3, and 9.8 psu increased temporarily at the initial exposure to show irregular swimming behavior, but then recovered a stable activity pattern through rapid salinity adaptation. However, the organisms suddenly exposed to 7.3 and 4.3 psu could not withstand the salinity stress, and their swimming behavior was severely disturbed and all individuals died within 48 hours. The findings suggest that red seabream underwent a temporary salinity stress process at the beginning of the exposure to concentrations of 10.0 psu or higher. At these concentrations, osmotic control was possible within at least 11 hours, so stable metabolic activity was also possible. However, organisms suddenly exposed to concentrations below 5.0 psu exceeded the tolerance to low salinity and the sublethal limit. In red seabream exposed to this concentration range, severe behavioral and metabolic disturbances were observed, and death was observed due to osmotic control failure. In conclusion, a salinity range of 5.0 to 10.0 psu can be predicted to correspond to a concentration range in which the osmotic control ability of the red seabream fingerlings is lost, and sub-lethal reactions occur.

서해안 군내간척지 담수호 및 농경지 염류의 시공간적 분포 특성 분석 (Spatio-Temporal Variations of Paddy and Water Salinity of Gunnae Reclaimed Tidelands in Western Coastal Area of Korea)

  • 범진아;정민혁;박현진;최우정;김영주;윤광식
    • 한국농공학회논문집
    • /
    • 제65권1호
    • /
    • pp.73-81
    • /
    • 2023
  • To understand salinity status of fresh water and paddy soils and the susceptibility of rice to salinity stress of Gunnae reclaimed tidelands, salinity monitoring was conducted in rainy and dry seasons. For fresh water, a high salinity was observed at the sampling location near the sluice gate and decreased with distance from the gate. This spatial pattern of fresh water salinity indicates the necessity of spatial distribution of salinity in the assessment of salinity status of fresh water. Interestingly, there was significant correlation between rainfall amount and salinity, implying that salinity of fresh water varies with rainfall and thus it may be possible to predict salinity of water using rainfall. Soil salinity also higher near the gate, reflecting the influence of high saline water. In addition, the groundwater salinity also high to threat rice growth. Though soil salinity status indicated low possibility of sodium injury, there was changes in soil salinity status during the course of rice growth, suggesting that more intensive monitoring of soil salinity may be necessary for soil salinity assessment. Our study suggests the necessity of intensive salinity monitoring to understand the spatio-temporal variations of salinity of water and soil of reclaimed tideland areas.

Physiological Response of Young Seedlings from Five Accessions of Diospyros L. under Salinity Stress

  • Wei, Ping;Yang, Yong;Fang, Ming;Wang, Fei;Chen, Hejie
    • 원예과학기술지
    • /
    • 제34권4호
    • /
    • pp.564-577
    • /
    • 2016
  • Salinity stress limits plant cultivation in many areas worldwide; however, persimmon (Diospyros spp.) has high tolerance to salt. Five accessions of Diospyros [three of Diospyros lotus (accession numbers 824, 846, and 847); one of Diospyros kaki var. sylvestris (869); and one of Diospyros virginiana (844)] were chosen for analysis of salinity stress. We compared the effects of salt stress on plant growth, relative water content (RWC), malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide content ($H_2O_2$), and antioxidative enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD; and ascorbate peroxidase, APX) in leaves of healthy potted seedlings from each of the five accessions after salt treatment for 25 days. Salt stress affected the growth of plants in all five accessions, with all three D. lotus accessions showing the most severe effect. Salt stress increased membrane lipid peroxidation in all accessions, but a stronger increase was observed in the three D. lotus accessions. Moreover, accumulation of $H_2O_2$ was faster in salt-sensitive D. lotus compared to salt-tolerant D. virginiana 844. The activities of all antioxidant enzymes increased in D. virginiana 844 and in D. kaki var. sylvestris 869; the activities of SOD, CAT, and APX were at similar levels in D. virginiana 844 and D. kaki var. sylvestris 869, but POD activity was stimulated to a greater extent in D. virginiana 844. The activities of all antioxidant enzymes (except POD) decreased in D. lotus 824 and increased (except for SOD) in D.lotus 846. The activities of SOD and APX decreased in D. lotus 847, whereas POD and CAT activities both increased. Relative water content decreased significantly in D. lotus. No significant changes in lipid peroxidation or relevant antioxidant parameters were detected in any of the accessions in controls treated with 0.0% NaCl. D. virginiana 844 had higher antioxidant capacity in response to salinity compared to other persimmon rootstocks. These results indicate that changes of these key physiological variables are related to salinity resistance in different accessions of persimmon.

단계적 염분변화가 Striped bass 잡종 (Morone chrysops × M. saxatilis)의 생리적 반응에 미치는 영향 (Effects of Gradual Change of Salinity on Physiological Response in Hybrid Striped Bass (Morone chrysops × M. saxatilis))

  • 임한규;한형균;이종하;정민환;허준욱
    • 한국어류학회지
    • /
    • 제17권1호
    • /
    • pp.43-48
    • /
    • 2005
  • 단계적인 방법에 의해 해수에서 담수로의 염분 하강과 담수에서 해수로의 염분 상승에 대한 잡종 striped bass (Morone chrysops ♀ ${\times}$ M. saxatilis ♂)의 생리적 반응을 조사하였다. 단계적인 염분 변화는 혈중 cortisol 농도의 상승을 동반하지 않았으나, 혈중 glucose 농도는 상승하였다. 혈장의 삼투질 농도와 $Na^+$, $Cl^-$ 농도는 염분상승과 함께 유의하게 증가하였으나, 염분 하강 때는 차이를 보이지 않았다. 이상의 실험 결과들은 잡종 striped bass는 단계적인 염분변화에 매우 효과적으로 적응하고 있음을 보여주고 있으며, 염분 스트레스에 강한 광염성 어종임을 입증하였다.

Effect of Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 Inoculation on Seed Germination and Early Growth of Maize and Sorghum-sudangrass hybrid Seedling under Different Salinity Levels

  • Kim, Ki-Yoon;Hwang, Seong-Woong;Saravanan, Venkatakrishnan Sivaraj;Sa, Tong-Min
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.51-58
    • /
    • 2012
  • Salinity is one of the most relevant abiotic factor limiting crop yield and its net primary productivity. In addition, salinity induces an increased stress ethylene synthesis in plants which, in turn, exacerbate the responses to the stressor. Bacterial single or co-inoculation effect was tested using previously characterized plant growth promoting (PGP) bacteria Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 on maize and sorghum-sudan grass hybrid under different concentrations of NaCl. Non-inoculated maize and sorghum-sudangrass hybrid showed 33.4% and 20.0% reduction in seed germination under highest NaCl (150 mM) level tested. However, under the same NaCl concentration, co-inoculation with B. iodinum RS16 and M. oryzae CBMB20 PGP strains increased the seed germination in maize (16.7%) and sorghum-sudangrass hybrid (4.4%). In Gnotobiotic growth pouch experiments conducted for maize and sorghum-sudangrass hybrid, co-inoculation of PGP B. iodinum RS16 and M. oryzae CBMB20 mitigated the salinity stress and promoted root length by 22.9% and 29.7%, respectively. Thus the results of this study could help in development of potential bioinoculants that may be suitable for crop production under saline conditions.

참돔(Pagrus major)에서 온도 및 염분 스트레스가 FK506BP 발현에 미치는 영향 (Effects of Thermal and Salinity Stress on Expression of FK506BP in the Red Seabream (Pagrus major))

  • 민병화;명정인;강한승
    • 한국해양생명과학회지
    • /
    • 제2권1호
    • /
    • pp.34-38
    • /
    • 2017
  • FK506BP는 일명 FK506 binding protein 12이라 불리는 작은 펩티드로서 single 도메인을 가진다. FK506BP는 면역반응 억제, 산화적 스트레스 및 염증과 관련이 있다. 본 연구의 목적은 참돔(Pagrus major)을 저수온(8℃, 33 psu) 및 저염분(20℃, 10 psu) 상태에 노출시킨 후, FK506BP 유전자의 발현을 관찰하는 것이다. 연구결과, FK506BP 유전자의 발현은 저수온(8℃, 33 psu) 및 저염분(20℃, 10 psu)상태에서 유의적으로 증가하는 것으로 나타났다. 이 연구결과로서 FK506BP 유전자는 수온 및 염분 등의 환경 스트레스에 대한 생체지표유전자로서 역할을 한다고 제의한다.

Changes in the metabolic profile and nutritional composition of rice in response to NaCl stress

  • Nam, Kyong-Hee;Kim, Do Young;Shin, Hee Jae;Pack, In-Soon;Kim, Chang-Gi
    • 농업과학연구
    • /
    • 제45권2호
    • /
    • pp.154-168
    • /
    • 2018
  • Salinity is a major abiotic stress that adversely affects crop productivity and quality. In this study, the metabolic profile and nutritional composition of rice in response to NaCl were analyzed. The plants were exposed to stressed or unstressed conditions, and their metabolic changes were examined in the shoots, roots, and grains collected at different growth stages. The levels of nutrients and anti-nutrients, including proximates, amino acids, fatty acids, minerals, vitamins, and phytic acid, were also determined for the grains. Application of NaCl significantly decreased the shoot and root growth and induced metabolic alterations at the tillering stage. During the heading stage, only the root metabolites were influenced by NaCl, and no metabolic variations related to salinity were found in the shoot, roots, and grains at the ripening stage. Nutritional analysis of the grain samples revealed that the amounts of linolenic acid and tricosanoic acid were significantly reduced while those of copper, sodium, and phytic acid were enhanced in response to stress. However, except for sodium, those differences were not great. Our results suggest that although NaCl-salinity influences the phenotypic and metabolic profiles of rice shoots and roots at the tillering stage, this impact becomes negligible as tissue development proceeds. This is especially true for the grains. Compositional analysis of the grains indicated that salinity induces some changes in fatty acids, minerals, and anti-nutrients.

Transcriptome Profiling of Differentially Expressed Genes in Cowpea (Vigna unguiculata L.) Under Salt Stress

  • Byeong Hee Kang;Woon Ji Kim;Sreepama Chowdhury;Chang Yeok Moon;Sehee Kang;Bo-Keun Ha
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.261-261
    • /
    • 2022
  • Cowpea [Vigna unguiculata (L.) Walp] is one of the most important grain legumes that enhance soil fertility and is well-adapted to various abiotic stress. Also, it is cultivated worldwide as a tropical annual crop, and the semi-arid regions are known as the main cowpea-produced regions. However, accumulation of soil salinity induced by low rainfall in these regions is reducing crop yields and quality. In general, plants exposed to soil salinity cause an accumulation of high ion chloride, which leads to the degradation of root and leaf proteins. In this study, we identified candidate genes associated with salinity tolerance through an analysis of differentially expressed genes (DEGs) in four cowpea germplasms with contrasting salinity tolerance. A total of 553,776,035 short reads were obtained using the Illumina Novaseq 6000 platform for RNA-Seq, which were subsequently aligned to the reference genome of cowpea Vunguiculata v1.2. A total of9,806 DEGs were identified between NaCl treatment and control of four cowpea germplasms. Among these DEGs, functions related to salt stress such as calcium transporter and cytochrome-450 family were associated with salt stress. In GO analysis and KEGG analysis, these DEGs were enriched in terms such as the "phosphorylation", ''extracellular region", and "ion binding". These RNA-seq results will improve the understanding of the salt tolerance of cowpea and can be used as useful basic data for molecular breeding technology in the future.

  • PDF