• Title/Summary/Keyword: salinity gradient

Search Result 91, Processing Time 0.028 seconds

Characteristics of Ocean Wave Radiation Patterns in a Dense Layer of Fluid (밀도층 유체에서 해양 방사파 패턴 특징)

  • Min, Eun-Hong;Choi, Ha-Yun;Kim, Young-Gyu;Paik, Kwang-Jun;Koo, Weon-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.92-97
    • /
    • 2019
  • The sea is stratified with water that has different densities because of pressure, temperature, and salinity. When conducting studies of internal waves in the ocean, the fluid is assumed to have layers that have discrete densities. This assumption is made because it is difficult to achieve layers that exhibit gradual changes in the density of the water. In this study, we used previous studies on ocean waves and their radiation issues in the density layer fluid to investigate the characteristics of internal waves in the ocean and their radiation patterns induced by a moving body in a stratified fluid. We also studied the difference in wave radiation between the density gradient layer and the discrete density layer. We found that the wave radiation patterns depended on the velocity of the moving body and the change in the density of the water. The crest apex shift phenomenon was observed in the density gradient in the layer of fluid.

Environmental Factors and Catch Fluctuation of Set-Net Grounds in the Coastal Waters of Yeosu (여수연안 정치망 어장의 환경요인과 어항 변동에 관한 연구)

  • Kim, Dong-Soo;Rho, Hong-Kil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 1993
  • In order to investigate the environmental properties of set net grounds located in the coastal waters of Yeosu, oceanographic observations on the fishing grounds were carried out by the training ship of Yeosu Fisheries University from Jun. 1988 to Dec. 1990. The resultes obtained are summarized as follows; 1) The water mass in the fishing grounds were divided into the inner water (29.50-31.00$\textperthousand$), the mixed water (31.10-32.70$\textperthousand$) and the offshore water (32.70-34.30$\textperthousand$) according to the distribution of salinity from T-S diagram plotted all salinity data observed from Jun. 1988 to Dec. 1990. In spring the mixing water prevailed and in summer the inner and mixing water. But in autumn and winter the mixing and offshore waters prevailed. 2) The inner water which was formed by land water from the river of Somjin and the precipitation in the Yeosu district flowed southerly along the coast of Dolsando and spread south-easterly in the vicinity of Kumodo. The inner water and offshore water which supplied from the vicinity of Sorido and Yokchido formed the thermal front and halofront. 3) As the mixing water flowing from the western sea of Cheju to the southern coast of korea was low in temperature, the water mass of low temperature which appeared at the offshore bottom of Sorido in summer was considered not to be the Tsushima warm current. 4) As vertical mixing was made frequently in spring, autumn and winter, the differences in temperature and salinity between surface and bottom was respectively small. In summer, however, the mixing was not made because of the inner water expanded offshore through the space between surface and 10m layer and so a thermocline of $2.0^{\circ}C$/10m and halocline of 4.0$\textperthousand$/10m respectively in vertical gradient was formed. 5) In the vicinity of Dolsando and Kum a water low in salinity prevailed, but in the vicinity of Namhaedo and YoKchido the reverse took place. The inner and mixing waters formed at these arease was limited to the observation area not to spread widely.

  • PDF

Evaluation of Reverse Electrodialysis System with Various Compositions of Natural Resources (다양한 농도 공급원의 조합을 통한 역전기투석 장치의 성능 평가)

  • Kwon, Kilsung;Park, Byung Ho;Kim, Dukhan;Kim, Daejoong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.513-518
    • /
    • 2015
  • Salinity gradient power (SGP) has attracted significant attention because of its high potential. In this study, we evaluate reverse electrodialysis (RED) with various compositions of available resources. The polarization curve (I-V characteristics) shows linear behavior, and therefore the power density curve has a parabolic shape. We measure the power density with varying compartment thicknesses and inlet flow rates. The gross power density increases with decreasing compartment thickness and increasing flow rate. The net power density, which is the gross power density minus the pumping power, has a maximum value at a compartment thickness of 0.2 mm and an inlet flow rate of 22.5 mL/min. The power density in RED is also evaluated with compositions of desalination brines, seawater, river water, wastewater, and brackish water. A maximum power density of $1.75W/m^2$ is obtained when brine discharged from forward osmosis (FO) and river water are used as the concentrated and the diluted solutions, respectively.

Pressure Retarded Osmosis Process: Current Status and Future (염도차를 이용한 압력지연삼투 공정의 현황과 미래)

  • Kim, Jihye;Kim, Seung-Hyun;Kim, Joon Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.791-802
    • /
    • 2014
  • Energy shortage is being exacerbated due to the increase of energy consumption and depletion of fossil fuels. In order to release the energy crisis, new types of energy resources such as small hydropower, solar power, wind power and biomass have been already developed or actively researched. Recently, osmotic power, which harvests energy from salinity gradient between seawater and fresh water, is considered as a feasible candidate. Among the osmotic power processes, pressure retarded osmosis (PRO) is widely gaining attention because of no emission of carbon dioxide and less sensitivity to the external environmental conditions. However, PRO process is facing difficulties such as the lack of specialized PRO membrane and optimization technologies. Therefore, PRO was reviewed in this paper in terms of theoretical background, membrane development, process development and fouling mechanism to provide insights and suggest the future direction of PRO research.

Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis

  • Han, Ji-Hyung;Kim, Hanki;Hwang, Kyo-Sik;Jeong, Namjo;Kim, Chan-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.302-312
    • /
    • 2019
  • The voltage produced from the salinity gradient in reverse electrodialysis (RED) increases proportionally with the number of cell pairs of alternating cation and anion exchange membranes. Large-scale RED systems consisting of hundreds of cell pairs exhibit high voltage of more than 10 V, which is sufficient to utilize water electrolysis as the electrode reaction even though there is no specific strategy for minimizing the overpotential of water electrolysis. Moreover, hydrogen gas can be simultaneously obtained as surplus energy from the electrochemical reduction of water at the cathode if the RED system is equipped with proper venting and collecting facilities. Therefore, RED-driven water electrolysis system can be a promising solution not only for sustainable electric power but also for eco-friendly hydrogen production with high purity without $CO_2$ emission. The RED system in this study includes a high membrane voltage from more than 50 cells, neutral-pH water as the electrolyte, and an artificial NaCl solution as the feed water, which are more universal, economical, and eco-friendly conditions than previous studies on RED with hydrogen production. We measure the amount of hydrogen produced at maximum power of the RED system using a batch-type electrode chamber with a gas bag and evaluate the interrelation between the electric power and hydrogen energy with varied cell pairs. A hydrogen production rate of $1.1{\times}10^{-4}mol\;cm^{-2}h^{-1}$ is obtained, which is larger than previously reported values for RED system with simultaneous hydrogen production.

Evaluation of Reverse Electrodialysis based on the Number of Cell Pairs and Stack Size Using Patterned Ion Exchange Membrane (패턴형 이온교환막을 이용한 스택의 셀 수 및 크기에 따른 역전기투석 성능 평가)

  • Dong-Gun Lee;Hanki Kim;Namjo Jeong;Young Sun Mok;Jiyeon Choi
    • New & Renewable Energy
    • /
    • v.19 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • Salinity gradient energy can be generated from a mixture of water streams with different salt concentrations by using reverse electrodialysis (RED). In this study, we evaluated the effect of stack size and number of cell pairs on the energy efficiency and specific energy of the RED process. Additionally, we studied the prementioned parameters to maximize the power density of RED. The performance of the RED stack which used a patterned ion exchange membrane, was evaluated as a function of stack size and feed flow rate. Moreover, it was noted that an increase in stack size increased the ion movement through the ion exchange membrane. Furthermore, an increase in feed flow rate led to a reduction in the concentration variation, resulting in an increase in OCV and power density. The energy efficiency and specific energy for 100 cells in the 10 × 10 cm2 stack were the highest at 12% and 0.05 kWh/m3, respectively, while the power density from 0.33 cm/s to 5 × 5 cm2 stack was the highest at 0.53 W/m2. The study showed that the RED performance can be improved by altering the size of the stack and the number of cell pairs, thereby positively affecting energy efficiency and specific energy.

Spatial Structure and Seasonal Variation of Temperature and Salinity in the Early Stage of Reclaimed Brackish Lake (Hwaong Reservoir) (간척호 (화옹호) 생성 초기의 수온과 염분의 공간적 구조와 계절적 변화)

  • Shin, Jae-Ki;Yoon, Chun-Gyeong;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.352-365
    • /
    • 2006
  • In order to evaluate the change of aquatic environment in the reclaimed Hwaong Reservoir, situated in the early stage after construction, this study was conducted to measure the change of precipitation, temperature, and salinity from June 2002 to January 2006. The range and mean of temperature was $-0.7{\sim}33.4^{\circ}C$ and $13.6^{\circ}C$, respectively. Temperature of upstream part rapidly changed during the transitional period; from spring to summer and from fall to winter. It showed abrupt decrease with high discharge from the streams temporarily. While, hypolimnetic temperature of upstream happened to be somewhat higher than that of surface or downstream. The range and mean of salinity was 0.3${\sim}$32.3 psu and 25.3 psu, respectively. Vertical difference of salinity was marked, and the change in the surface water was much higher than middle or bottom layers. It showed the marked difference at all stations, except for the bottom layer of upstream into which Namyang Stream flows, indicating that vertical gradient of salinity is strongly sustained in the reservoir. Salinity was changed markedly during the storm period (June${\sim}$October), and freshwater with low salinity was expanded from upstream to downstream along the surface layer. The surface of the reservoir was totally covered by the stream discharged water with a large amount of silt and low salinity during this period. The difference of temperature and salinity between the surface and bottom layer ranged $-10.6{\sim}9.7^{\circ}C$ and $-27.1{\sim}30.0$ psu, respectively. The big difference of salinity appeared with a large discharge of freshwater from the streams or large input of seawater through the gate. Salinity was negatively correlated with temperature, indicating the influence of monsoon storm events on the salinity under the whole watershed scale of this brackish reclaimed reservoir.

Spatial Distribution of Macrozoobenthos Along the Salinity Gradient and Sedimentary Environment in the Watancheon Estuary, Beobseongpo, Southwest Coast of Korea (법성포 와탄천 하구역의 염분과 퇴적환경에 따른 대형저서동물의 공간분포)

  • Hong, Jae-Sang;Lim, Hyun-Sig
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.1
    • /
    • pp.8-19
    • /
    • 2002
  • Spatial distribution pattern of macrozoobenthos was studied along the salinity gradient and sedimentary environment in the Watancheon estuary, Beobseongpo, southwest coast of Korea. Ten stations were set from the mouth towards the head of estuary. Three replicate sediment samples were taken using a van Veen grab (surface area $0.1m^{2}$) at each station between June 1998 and January 1999. A total of 114 species were collected during the study period and they are composed of 44 species of polychaetes (39%), 34 of crustaceans (30%), 24 of molluscs (21%) and 12 of miscellaneous. The former two taxa together accounted for 69% in the total number of species. The mean density was 3,053 ind./m$^{2}$, comprising 2,536 ind./m$^{2}$ from polychaetes (83%) and 439 ind./m$^{2}$, crustaceans (14%). Moreover, the mean biomass was 58.23 gwwt./m$^{2}$, consisting of 29.56 gwwt./m$^{2}$ from polychaetes (51%), 23.38 gwwt./m$^{2}$, molluscs (40%). A spionid polychaete Minuspio japonica, two corophiid amphipods Grandidierella japonica and Corophium sinense, a bivalve Potamocorbula amurensis were major dominants at the head of estuary where the salinity was relatively lower compared with contiguous sites. The distributions of M. japonica and G. japonica were significantly related to the salinity and sediment environment, respectively, whereas C. sinense and P, amurensis showed no significance. The nereid polychaete, Hediste japonica, also predominated at the head of the estuary where bottom salinity was relatively low. Species diversity was high at the mouth area whereas low diversity and few species number were seen at the stations in the head of the estuary, influenced by freshwater and sandy sediment. Based on the cluster analysis, the macrobenthic community was classified into four station groups from head (station group A) toward mouth (group D) in the study area. The number of species and abundance between station group B and C were significantly different. And the abundance of between two neighboring station groups (station group A and B, B and C, C and D) was also different. These results suggested that the spatial distribution pattern of macrobenthos in this estuary seemed mainly related to gradients in bottom salinity and sediment grain size among environmental factors.

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.

Stratification Variation of Summer and Winter in the South Sea of Korea (한국 남해의 여름과 겨울철 성층 변동)

  • Lee, Chung-Il;Koo, Do-Hyung;Yun, Jong-Hwui;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.119-125
    • /
    • 2007
  • In order to illustrate the variation cf stratification and to know the effects of the temperature and the salinity on the stratification in the South Sea of Korea, the stratification parameter defined as potential energy anomaly (PEA, $V(J/m^3)$) introduced by Simpson and Hunter (1974) was used. The oceanographic data were obtained in August 1999 and February 2000 by National Fisheries Research and Development Institute (NFRDI). V in August is generally high in offshore and low in near shore. However, in February, V in the near shore is higher than that cf the offshore due to the vertical temperature gradient between surface and bottom layer caused by the expansion of South Korean Coastal Waters (SKCW). In summer, the increase of the atmospheric heating acts on the stratification as the buoyancy forcing. In most cases, the effect cf the temperature on the stratification is stronger than that of the salinity. The temperature effect is predominantly due to the extent of the intrusion of Tsushima Warm Current into the study area. However, at stations where V is high the effect of the salinity is also significant. In winter, V is very low due to the decrease cf the buoyancy forcing, but some stations show the relatively high V due to the expansion of SKCW and salinity in winter unlike that in summer makes the stratification weak.

  • PDF