• 제목/요약/키워드: salinity environment

검색결과 698건 처리시간 0.028초

Resistance of Cucumber Grafting Rootstock Pumpkin Cultivars to Chilling and Salinity Stresses

  • Xu, Yang;Guo, Shi-rong;Li, He;Sun, Hong-zhu;Lu, Na;Shu, Sheng;Sun, Jin
    • 원예과학기술지
    • /
    • 제35권2호
    • /
    • pp.220-231
    • /
    • 2017
  • Grafting using a pumpkin (Cucurbita sp.) rootstock is an effective way to improve cucumber (Cucumis sativus) resistance to a combination of chilling and salinity stresses. We evaluated the tolerance of 15 pumpkin cultivars to chilling, salinity, and combined stresses at the germination and seedling stages. Selected plant characteristics, including germination rate, germination potential, germination index, plant height, stem thickness, fresh weight, and dry weight, were analyzed. We used the unweighted pair group method with arithmetic mean for cluster analyses to determine the stress tolerance levels of the pumpkin cultivars. The 15 cultivars were divided into three clusters: tolerant, moderately tolerant, and susceptible to stress treatments. The stress tolerances of all cultivars were variable in the germination and seedling stages, and most cultivars were not tolerant to individual treatments of chilling or salinity stresses at both stages. These results suggest that identifying suitable cultivars for use as rootstock during cucumber grafting should involve the evaluation of stress tolerance during different growth stages. Additionally, cultivars tolerant to chilling stress may not be tolerant to salinity stress; therefore, the choice of pumpkin rootstock should depend on where the grafted plant will be grown. Cultivars tolerant to a combination of chilling and salinity stresses may be useful as rootstock for cucumber grafting. Our findings may serve as reference material for choosing appropriate pumpkin rootstocks for cucumber grafting.

대한해협에서의 수온 및 염도변화를 고려한 선박의 저항성능 예측을 위한 기초 연구 (Fundamental Study for Predicting Ship Resistance Performance Due to Changes in Water Temperature and Salinity in Korea Straits)

  • 석준;진송한;박종천;신명수;김성용
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.418-426
    • /
    • 2015
  • Recently, shipping operators have been making efforts to reduce the fuel cost in various ways, such as trim optimization and bulb re-design. Furthermore, IMO restricts the hydro-dioxide emissions to the environment based on the EEDI (Energy Efficiency Design Index), EEOI (Energy Efficiency Operational Indicator), and SEEMP (Ship Energy Efficiency Management Plan). In particular, ship speed is one of the most important factors for calculating the EEDI, which is based on methods suggested by ITTC (International Towing Tank Conference) or ISO (International Standardization Organization). Many shipbuilding companies in Korea have carried out speed trials around the Korea Straits. However, the conditions for these speed trials have not been exactly the same as those for model tests. Therefore, a ship’s speed is corrected by measured environmental data such as the seawater temperature, density, wind, waves, swell, drift, and rudder angle to match the conditions of the model tests. In this study, fundamental research was performed to evaluate the ship resistance performance due to changes in the water temperature and salinity, comparing the ISO method and numerical simulation. A numerical simulation of a KCS (KRISO Container ship) with a free-surface was performed using the commercial software Star-CCM+ under three conditions that were assumed based on the water temperature and salinity data in the Korea Straits. In the simulation results, the resistance increased under low water temperature & high salinity conditions, and it decreased under high water temperature & low salinity conditions. In addition, the ISO method showed the same result as the simulation.

Analytical Model of Salt Budget in the Upper Indian River Lagoon, Florida USA

  • Kim, Young-Taeg
    • Ocean and Polar Research
    • /
    • 제26권1호
    • /
    • pp.33-42
    • /
    • 2004
  • Effect of freshwater discharge on the long-term salt balance in the Northern and Central Indian River Lagoon (IRL) is successfully simulated by a new analytical solution to a water balance-based one-dimensional salt conservation equation. Sensitivity tests show that the salinity levels drop abruptly even during the dry season (November to May) due to the high surface runoff discharge caused by tropical storms, depressions, and passage of cold fronts. Increasing surface runoff and direct precipitation has risen by ten times, lowering the salinity level down to 12psu in the Northern Central zone, and to 17 psu in the Northern zone. However, the salinity level in the Southern Central zone has decreased to 25 psu. High sensitivity of the Northern Central zone to freshwater discharge can be partially explained by a rapid urbanization in this zone. During the dry season, less sensitivity of the Southern Central zone to the increased surface runoff is attributed to the proximity of the zone to the Sebastian Inlet and a strong diffusion condition possibly resulting from the seawater intrusion to the surficial aquifer at the Vero Beach. During the wet season, however, the whole study area is highly sensitive to freshwater discharge due to the weak diffusion conditions. High sensitivity of the IRL to the given diffusion conditions guarantees that the fresh-water release occurs during strong wind conditions, achieving both flood control in the drainage basin and a proper salinity regime in the IRL.

Tolerance to Salt Stress by Plant Growth-Promoting Rhizobacteria on Brassica rapa var. glabra

  • Hussein, Khalid A.;Yoo, Jaehong;Joo, Jin Ho
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.776-782
    • /
    • 2016
  • Salinity has been a threat to agriculture in some parts of the world; and recently, the threat has grown. Plant growth-promoting rhizobacteria (PGPR) may benefit plant growth, either by improving plant nutrition or producing plant growth hormones. The effects of rhizobacterial strains to attenuate the salinity stress on the germination of Chinese cabbage seeds were tested using four different concentrations of NaCl (50, 100, 150, and 200 mM). Also, PGPR strains were tested to enhance the early germination of Chinese cabbage seeds under normal conditions. Azotobacter chroococcum performed best with enhancing the radicle length of 4.0, 1.2, and 1.0 times at treatments of 50, 100, and 150 mM of NaCl, respectively. Additionally, significant differences were found in plumule length, A. chroococcum and Lactobacillus sp. showed remarkable activation either in normal or under stress conditions. Co-inoculation by three rhizobacterial strains (LAPmix) indicated synergistic effect to enhance the early germination of the seeds. The results of this study are promising for application of rhizobacterial strains that possess plant growth promoting traits to enhance the plant tolerance against salinity.

남해안 시.공간적 수질환경 특성 비교 (Compared of Temporal and Spatial Sea Water Quality in the Southern Coasts of Korea)

  • 조은섭
    • 한국환경과학회지
    • /
    • 제18권2호
    • /
    • pp.141-151
    • /
    • 2009
  • Temperature, salinity, COD, DIN (Dissolved Inorganic Nitrogen), DIP (Dissolved Inorganic Phosphorus), and Chlorophyll ${\alpha}$ obtained from the southern coastal waters during the period of 2003 to 2005 were analyzed. Variability in temperature was not found between groups in southern coastal waters, but significantly different depending on sampling sites (p<0.05). The average temperature in 2003 estimated at $18.33^{\circ}C$ that was annually increased by 2005 and significantly different based on statistics (p<0.05). Unlikely to temperature, salinity was significantly different depending on sampling sites, as well as monthly variations (p<0.05). Likewise to temperature, the value of salinity was annually increased. COD estimated at the average of $>1.7\;mg\;l^{-1}$ for three years, indicating optimal water quality. The fluctuations of nutrients were extremely shown in different sampling sites and monthly variations. Chlorophyll a recorded above $2.0{\mu}g\;l^{-1}$ which was associated with high primary phytoplankton, whereas it showed much fluctuations in temporal and spatial, In particular, Tongyong, Jaranman, Jinjuman, and Samcheonpo located in the southeast were the highest fluctuations in water quality than any other regions. The correlation between salinity/COD and nutrients/chlorophyll a was strongly negative or positive, which was possibly associated with much the introduction of run-off water as well as rainfall in summer.

양식장 용수 추가 확보를 위한 수압파쇄 적용성 평가 (Feasibility of Hydraulic Fracturing for Securing Additional Saline Groundwater in the Land-based Aquaculture Farm)

  • 이병선;김영인;박학윤;조정환;송성호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권7호
    • /
    • pp.34-42
    • /
    • 2015
  • Feasibility tests for the hydraulic fracturing were conducted in order to secure additional saline groundwater for irrigating to the land-based aquaculture farm. Two boreholes were placed to the aquaculture farm A and B, respectively. A hydraulic fracturing using single packer was applied to major fracture zones within two boreholes. To identify effects of hydraulic fracturing on securing additional saline groundwater, some selective methods including well logging methods, pumping tests, and groundwater quality analysis were commonly applied to the boreholes before and after the hydraulic fracturing. Enlarging/creating fracture zones, increasing water contents in bedrock near boreholes, and increasing transmissivity were observed after the hydraulic fracturing. Even though the hydraulic fracturing could be an alternative to secure additional saline groundwater to the land-based aquaculture farm, salinity of the groundwater did not meet optimal thresholds for each fingerling in two farms: Fresh submarine groundwater discharge flowed the more into borehole of the farm A that resulted in decreasing a salinity value. Increased saline groundwater quantity in the borehole of the farm B rarely affect to the salinity. Although salinity problem of groundwater limited its direct use for the farms, the mixing with seawater could be effectively used for the fingerlings during the early stage. A horizontal radial collector well placed in the alluvial layer could be an alternative for the farms as well.

수적(垂滴)법을 이용한 이산화탄소 지중저장 조건에서의 염수-이산화탄소 간 계면장력 측정 (Measuring Interfacial Tension between Brine and Carbon Dioxide in Geological CO2 Sequestration Conditions using Pendant Bubble Methods)

  • 박규령;안혜진;김선옥;왕수균
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.46-55
    • /
    • 2016
  • This experimental study was aimed to estimate interfacial tension of brine-$CO_2$ by using a pendant bubble method and image analysis. Measurements were performed for wide ranges of temperatures, pressures, and salinities covering reservoir conditions in Pohang basin, a possible candidate for $CO_2$ storage operation in Korea. The profiles of $CO_2$ bubbles in brine obtained from image analysis with the densities of brine and $CO_2$ from previous studies were applied to Laplace-Young equation for calculating interfacial twnsion in brine-$CO_2$ system. The experimental results reveals that the interfacial tension is significantly affected by reservoir conditions such as pressure, temperature and water salinity. For conditions of constant temperature and water salinity, the interfacial tension decreases as pressure increases for low pressures (P < $P_c$), and approaches to a constant value for high pressures. For conditions of constant pressure and water salinity, the interfacial tension increases as temperature increases for T < $T_c$, with an asymptotic trend towards a constant value for high temperatures. For conditions of constant pressure and temperature, the interfacial tension increases with increasing water salinity. The trends in changes of interfacial tension can be explained by the effects of the reservoir conditions on the density difference of brine and $CO_2$, and the solubility of $CO_2$ in brine. The information on interfacial tensions obtained from this research can be applied in predicting the migration and distribution of injecting and residual fluids in brine-$CO_2$-rock systems in deep geological environments during geological $CO_2$ sequestrations.

하수처리장 에너지 자립화를 위한 고도화학침전 슬러지의 메탄잠재력 평가 (Biochemical Methane Potential of Chemically Enhanced Primary Treatment Sludge for Energy-Independence of Sewage Treatment Plants)

  • 천민선;김형호;배효관
    • 한국물환경학회지
    • /
    • 제36권4호
    • /
    • pp.322-331
    • /
    • 2020
  • By introducing chemically enhanced primary treatment (CEPT) in the first stage of sewage treatment, organic matter in sewage can be effectively recovered. Because CEPT sludge contains a high biodegradable organic matter in volatile solids (VS), it is feasible to convert the collected CEPT sludge into energy through anaerobic digestion. This study examined the properties and biochemical methane potential (BMP) of the CEPT sludge obtained from a sewage treatment plant located in an ocean area. The CEPT sludge contains a VS content of 37,597 mg/L, which is higher than that of excessive sludge (ES), i.e., 33,352 mg-VS/L. In the methane generation reaction, the lag period was as short as 1 to 2 days. The BMP for the CEPT sludge was 0.57 ㎥-CH4/kg-VSremoved which is better than that of ES, i.e., 0.36 ㎥-CH4/kg-VSremoved. Unfortunately, the CEPT sludge showed a high salinity as 0.56~0.75% probably due to the saline sewage. Due to the salinity, repeated BMP testing in a sequencing batch reactor showed significantly low methane production rates and BMPs. Also, the ES showed a strongly reduced BMP when the salinity was adjusted from 0.20 to 0.70% by NaCl. The ES mixture with higher CEPT content showed a better BMP, which is suitable for co-digestion. Besides, anaerobic digestion for 100% CEPT sludge can be a considerable option instead of co-digestion.

우리나라 근해 해양환경에 따른 가스터빈엔진 부식에 대한 연구 (Corrosion of the Gas-Turbine Engine According to the Environment of the Korean Seas)

  • 오경원;임세한
    • 항공우주시스템공학회지
    • /
    • 제11권2호
    • /
    • pp.43-50
    • /
    • 2017
  • 한반도의 근해는 다양한 해양변화가 있으며, 작전을 수행하는 해군함정, 함재기, 해상운용 비행기, 공군의 전투기, 해안에 위치한 공항 및 비행장 등이 영향을 받는다. 특히 해양환경의 직접적인 영향인 염분은 가스터빈엔진과 같이 고온/고속으로 운용되는 장비에 연료의 황성분과 화학적 변화로 고온부식(Hot Corrosion)이 발생시킨다. 한계값으로 정의 할 수 없지만 염분에 의한 부식은 디미스터(공기흡입구) 높이가 7m 이하일 경우 해상에서 유입되는 염분이 증가하여 부식이 급격하게 증가하였다. 또한 서해보다 동해에서 작전임무를 수행하는 무기체계는 염분도, 풍량, 파고에 의해 비산되는 염분이 상대적으로 많아 부식율이 17% 증가함을 확인하였다. 해상에서 가스터빈엔진을 운용하는 해상무기체계는 염분유입을 최소화하기 위해 해상으로부터 13m이상에서 운용되어야 급격한 고온부식을 최소화 될 것으로 본다.

Estimation of Water Quality of Fish Farms using Multivariate Statistical Analysis

  • Ceong, Hee-Taek;Kim, Hae-Ran
    • Journal of information and communication convergence engineering
    • /
    • 제9권4호
    • /
    • pp.475-482
    • /
    • 2011
  • In this research, we have attempted to estimate the water quality of fish farms in terms of parameters such as water temperature, dissolved oxygen, pH, and salinity by employing observational data obtained from a coastal ocean observatory of a national institution located close to the fish farm. We requested and received marine data comprising nine factors including water temperature from Korea Hydrographic and Oceanographic Administration. For verifying our results, we also established an experimental fish farm in which we directly placed the sensor module of an optical mode, YSI-6920V2, used for self-cleaning inside fish tanks and used the data measured and recorded by a environment monitoring system that was communicating serially with the sensor module. We investigated the differences in water temperature and salinity among three areas - Goheung Balpo, Yeosu Odongdo, and the experimental fish farm, Keumho. Water temperature did not exhibit significant differences but there was a difference in salinity (significance <5%). Further, multiple regression analysis was performed to estimate the water quality of the fish farm at Keumho based on the data of Goheung Balpo. The water temperature and dissolved-oxygen estimations had multiple regression linear relationships with coefficients of determination of 98% and 89%, respectively. However, in the case of the pH and salinity estimated using the oceanic environment with nine factors, the adjusted coefficient of determination was very low at less than 10%, and it was therefore difficult to predict the values. We plotted the predicted and measured values by employing the estimated regression equation and found them to fit very well; the values were close to the regression line. We have demonstrated that if statistical model equations that fit well are used, the expense of fish-farm sensor and system installations, maintenances, and repairs, which is a major issue with existing environmental information monitoring systems of marine farming areas, can be reduced, thereby making it easier for fish farmers to monitor aquaculture and mariculture environments.