• Title/Summary/Keyword: salicylic acid

Search Result 369, Processing Time 0.029 seconds

Application of Jasmonic Acid Followed by Salicylic Acid Inhibits Cucumber mosaic virus Replication

  • Luo, Ying;Shang, Jing;Zhao, Pingping;Xi, Dehui;Yuan, Shu;Lin, Honghui
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Systemic acquired resistance is a form of inducible resistance that is triggered in systemic healthy tissues of local-infected plants. Several candidate signaling molecules emerged in the past two years, including the methylated derivatives of well-known defense hormones salicylic acid (SA) and jasmonic acid (JA). In our present study, the symptom on Cucumber mosaic virus (CMV) infected Arabidopsis leaves in 0.1 mM SA or 0.06 mM JA pre-treated plants was lighter (less reactive oxygen species accumulation and less oxidative damages) than that of the control group. JA followed by SA (JA${\rightarrow}$SA) had the highest inhibitory efficiency to CMV replication, higher than JA and SA simultaneous co-pretreatment (JA+SA), and higher than a JA or a SA single pretreatment. The crosstalk between the two hormones was further investigated at the transcriptional levels of pathogenesis-related genes. The time-course measurement showed JA might play a more important role in the interaction between JA and SA.

Dextran-5- (4-ethoxycarbonylphenylazo) salicylic Acid Ester as a Colon-Specific Prodrug of 5-Aminosalicylic Acid (5-아미노살리실산의 結腸標的性 프로드럭 : 덱스트란-5- (4-에톡시카르보닐페닐아조) 살리실산 에스테르)

  • Jung, Yun-Jin;Lee, Jeoung-Soo;Kim, Yun-Taek;Kim, Young-Mi;Kim, Dae-Duk;Han, Suk-Kyu
    • YAKHAK HOEJI
    • /
    • v.42 no.1
    • /
    • pp.31-38
    • /
    • 1998
  • Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester(Dextran-5-ESA) was synthesized as a potential colon-specific prodrug of 5-aminosalicylic acid (5-ASA). No free 5-(4-eth oxycarbonylphenylazo) salicylic acid (5-ESA) was detected when the chemical stability of dextran-5-ESA was tested at pH 1.2, or pH 6.8 bath solution, Effects of the degree of substitution (DS) and molecular weight of dextran on the depolymerization by dextranase was investigated. Depolymerization(%) decreased with increasing DS, and was not affected by M.W. of dextran. The extent of prodrug conversion after incubation in the contents of various G.I. Tract segments of rats was evaluated. 5-ASA was released in the cecal contents, but not in the contents of proximal small intestine (PSI) or distal small intestine (DSI). No significant prodrug conversion was observed in the cecal contents of rats pretreated with kanamycin sulfate, which indicated that microbial enzymes were responsible for the cleavage of the prodrug.

  • PDF

Identification of Phenolic Antioxidant Components Isolated from Panax ginseng (인삼으로부터 분리된 페놀성 항산화 성분의 동정)

  • Wee, Jae-Joon;Park, Jong-Dae;Kim, Man-Wook;Lee, Hyong-Joo
    • Applied Biological Chemistry
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 1989
  • The chemical structures of four phenolic compounds isolated from Panax ginseng were identified to be salicylic acid, p-coumaric acid, gentisic acid and caffeic acid by spectral data of IR, MS and $^1H-NMR$ spectroscopy. Among them, gentisic acid and caffeic acid were the first compounds isolated and identified from Panax ginseng.

  • PDF

Allelopathic Effects of Extracts of Trifolium repens on the Seed Germination and Seedling Growth of Zoysia japonica (토끼풀(Trifolium repens) 추출액이 잔디(Zoysia japonica)의 발아와 생장에 미치는 알레로파시 효과)

  • Lee, Ji-Hun;Kim, In-Taek;Lee, Ho-Jun;Kim, Yong-Ok
    • The Korean Journal of Ecology
    • /
    • v.24 no.3
    • /
    • pp.125-130
    • /
    • 2001
  • The allelopathic effects of aqueous extracts from Trifolium repens were studied. Aqueous extracts of leaves, stems, roots and flowers of T. repens strongly inhibited the seed germination and seedling growth of Zoysia japonica. In general, the higher concentration of the extracts showed the more great inhibition effect. The phenolic compounds extracted from T repens were analysed and identified using gas chromatography. 14 phenolic compounds were isolated from the leaves, stems, roots and flowers: caffeic acid, p-hydroxy benzoic acid, ferulic acid, gallic acid, p-coumaric acid, vanillic acid, trans-cinnamic acid, 2,5 dihydroxy benzoic acid, syringic acid, 2-hydroxy cinnamic acid, benzoic acid, salicylic acid, phloroglucinol and phanylacetic acid. The seed germination and relative growth ratio of Z. japonica by 14 phenolic compounds were inhibited in whole treatment. Stronger growth inhibitor were benzoic acid, salicylic acid and trans-cinnamic acid. From these results it is suggested that the phenolic compounds from T. repens seemed to be responsible for the allelopathic potential.

  • PDF

Effect of Salicylic Acid and Abscisic Acid on Drought Stress of Waxy Corn (찰옥수수 한발 스트레스에 대한 살리실산과 앱시식산의 처리 효과)

  • Seo, Youngho;Park, Kijin;Chang, Eunha;Ryu, Sihwan;Park, Jongyeol;Kim, Kyunghi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.54-58
    • /
    • 2014
  • Climate change may result in greater risk of yield reduction of waxy corn due to drought stress and maize is one of the sensitive crops to the soil moisture shortage. While irrigation is the most effective practice to reduce the drought damage, farmers are unable to apply water due to limited water resource and irrigating facilities. The study was conducted to investigate the application effect of salicylic acid and abscisic acid on reducing drought stress of waxy corn (Zea mays L.). Drought stress was imposed by withholding irrigation from 9 days before anthesis to 14 days after anthesis. Salicylic acid or abscisic acid was applied on tasseling date at concentration of 0.5 mM and 0.1 mM, respectively. Drought stress increased anthesis-silking interval (ASI) by 3.0~3.3 days and decreased plant height, ear length, ear diameter, number of rows in ear, and yield by 47~51 cm, 4.6~5.0 cm, 4.4~5.3 mm, 1.5~2.0, and 2.4~2.5 Mg/ha, respectively. Application of salicylic acid and abscisic acid did not significantly reduced the drought injuries of waxy corn. Pretreatment of the plant growth regulators before water deficit stress or divided application at low concentration may be required to obtain the reduction effect on drought stress of waxy corn.

Differential Proteomic Analysis of Chinese fir Clone Leaf Response to Salicylic Acid

  • Yang, Mei;Lin, Sizu;Cao, Guangqiu
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.2
    • /
    • pp.83-94
    • /
    • 2010
  • Chinese fir (Latin name: Cunninghaimia lanceolata) is one of the major commercial coniferous trees. Most of Chinese fir forests are managed in successive rotation sites, which lead productivity to decline. Autotoxicity is the important reason for soil degradation of Chinese fir plantation, especially, phenolic acids are considered as the major allelopathic toxins which induce autotoxicity in Chinese fir rotation stands. We performed here proteomic approach to investigate the response of proteins in Chinese fir leaves to salicylic acid. The tube plantlets of Chinese fir clone were treated with 120 mg/L salicylic acid for 1, 3 and 5th day. 2-DE, coupled with MALDI-TOF-TOF/MS, was used to separate and identify the responsive proteins. We found 12, 7, and 12 candidate protein spots that were up- or down-regulated by at least 2.5 fold after 1, 3, and 5th day of the stress, respectively. Of these protein spots, 16 spots were identified successfully. According to the putative physiological functions, these proteins were categorized into five classes (1) the proteins involved in protein stability and folding, including 26S proteome, Grp78, Hsp70, Hsp90 and PPIase; (2) the protein involved in photosynthesis and respiration, including OEC 33 kDa subunit, GAPDH; (3) the protein related to cell endurance to acid, F-ATPase; (4) the protein related to cytoskeleton, tubulin; (5) the protein related to protein translation: prolyl-tRNA synthetase. These results give new insights into autotoxic substance stress response in Chinese fir leaves and provide preliminary footprints for further studies on the molecular signal mechanisms induced by the stress.

Efficacy of Pesticides and Growth Hormones against Root Disease Complex of Mulberry (Morus alba L.)

  • Naik, Vorkady Nishitha;Sharma, Dinesh Dutta
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.101-106
    • /
    • 2007
  • During mulberry cultivation, root disease complex caused by the association of root knot nematode (Meloidogyne incognita) with root rot pathogens like Fusarium solani and Botryodiplodia theobromae poses serious loss in leaf production. Therefore, an attempt was made to assess the efficacy of eight pesticides (Metayalaxyl+Mancozeb, Thiophanate methyl, Mancozeb, Bitertanol, Phenomiphos, Phorate, Thionazin & Carbofuran) and two growth hormones (Salicylic acid and Indole 3 acetic acid) at 0.1 and 0.2% concentrations under in vitro conditions against nematode (hatching of eggs and mortality of larvae) and root rot pathogens (poisoned food technique) for short listing the treatments to develop an IDM strategy. Results revealed that among the pesticides and growth hormones, Carbofuran followed by Salicylic acid were found to be effective at 0.2% concentration against both nematode and pathogenic fungi. Both the chemicals inhibited the hatching of nematode eggs by 83.5-78.9% and 80-76% larval mortality over the control and reduced the mycelial growth of both the pathogenic fungi to an extent of 75.5-77.8%. Though Mancozeb inhibited both the pathogenic fungi strongly (77-80%), it did not show any effectiveness against nematode. The rest of the chemicals were found either moderately or poorly effective in reducing the growth of pathogenic fungi, hatching of nematode eggs and enhancing the mortality of larvae. The two effective chemicals viz., Carbofuran and Salicylic acid, which rated as strong inhibitors against both nematode and pathogenic fungi, can be exploited in developing an IDM package as one of the component for better management of root disease complex in mulberry.

Inabenfide-Induced Alleviation of Salt Stress in Rice as Linked to Changes in Salicylic Acid Content and Catalase Activity

  • Sawada, Hiroko;Kim, Dea-Wook;Kobayashi, Katsuichiro;Shim, Ie-Sung
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • The effect of inabenfide was investigated in rice seedlings subjected to salt stress in relation to changes in chlorophyll fluorescence(${\Delta}F/Fm'$), lipid peroxidation, salicylic acid(SA) content, and catalase(CAT) activity. A reduction in shoot growth of rice seedlings by 120 mM NaCl treatment was significantly alleviated by pretreatment with 30 ${\mu}M$ inabenfide. Sodium ion content was not affected by pretreatment with inabenfide, suggesting that alleviation was not due to a reduction in sodium ion uptake by the rice seedlings. At three days after NaCl treatment, the rice seedlings pretreated with inabenfide showed a higher ${\Delta}F/Fm'$(30%) and lower lipid peroxidation(28%) compared with the rice seedlings treated with NaCl alone. After NaCl treatment, CAT activity in the third leaf of rice seedlings decreased significantly but alleviated by pretreatment with inabenfide. Furthermore, pretreatment with inabenfide also reduced the level of SA which accumulated drastically in the third leaf of rice seedlings within a day after exposure to salt stress. These results suggest that inabenfide prevents SA accumulation in rice seedlings under salt stress which eventually induces the alleviation of salt stress damage.

  • PDF